Confidence Intervals for Ratio of Percentiles of Birnbaum-Saunders Distributions and Its Application to PM2.5 in Northern Thailand
DOI:
https://doi.org/10.11113/mjfas.v20n3.3338Keywords:
Bayesian credible interval, Birnbaum-Saunders distribution, generalized fiducial confidence interval, highest posterior density interval, percentileAbstract
In the statistical literature, the Birnbaum-Saunders distribution has garnered considerable attention as an important fatigue life distribution for engineers. This distribution finds applications in medicine, engineering, and science. A percentile denotes a threshold below which a designated percentage of scores or data points are situated. In particular cases, percentiles are the preferred choice over mean and variance, especially when dealing with skewed data. This paper investigates confidence intervals for the ratio of percentiles of Birnbaum-Saunders distributions. It discusses the generalized fiducial confidence interval, Bayesian credible interval, and the highest posterior density intervals using a prior distribution with partial information and a proper prior with known hyperparameters. To compare the performance of these confidence intervals, the study employs coverage probability and average length measurements. Monte Carlo simulation via the R package is used to calculate the coverage probability and average length. The results indicate that the highest posterior density interval using a prior distribution with partial information outperforms the other confidence intervals. Finally, the paper presents the results of the simulation study and applies them in the field of environmental sciences.
References
Achcar, J. A. (1993). Inferences for the Birnbaum-Saunders fatigue life model using Bayesian methods. Computational Statistics and Data Analysis, 15(4), 367-380.
Bhattacharyya, G., & Fries, A. (1982). Fatigue failure Models-Birnbaum-Saunders vs. Inverse Gaussian. IEEE Transactions on Reliability, 31(5), 439-441.
Birnbaum, Z. W., & Saunders, S. C. (1969). A new family of life distributions. Journal of Applied Probability, 6(2), 319-327.
Birnbaum, Z. W., & Saunders, S. C. (1969). Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability, 6(2), 328-347.
Box, G. E. P., & Tiao, G. C. (1992). Bayesian inference in statistical analysis. USA: Wiley.
Chang, D. S., & Tang, L. C. (1994). Percentile bounds and tolerance limits for the Birnbaum-Saunders distribution. Communications in Statistics-Theory and Methods, 23(10), 2853-2863.
Desmond, A. F. (1986). On the relationship between two fatigue-life models. IEEE Transactions on Reliability, 35(2), 167-169.
Durham, S. D., & Padgett, W. J. (1997). Cumulative damage models for system failure with application to carbon fibers and composites. Technometrics, 39(1), 34-44.
Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society Series C Applied Statistics, 41(2), 337-348.
Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995). Adaptive rejection metropolis sampling within Gibbs sampling. Journal of the Royal Statistical Society Series C Applied Statistics, 44(4), 455-472.
Guo, X., Wu, H., Li, G., & Li, Q. (2017). Inference for the common mean of several Birnbaum-Saunders populations. Journal of Applied Statistics, 44(5), 941-954.
Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19(2), 491-544.
Jayalath, K. P. (2021). Fiducial inference on the right censored Birnbaum-Saunders data via Gibbs sampler. Stats, 4(2), 385-399.
Leiva, V., Barros, M., Paula, G. A., & Sanhueza, A. (2008). Generalized Birnbaum-Saunders distributions applied to air pollutant concentration. Environmetrics, 19(3), 235-249.
Li, Y. L., & Xu, A. C. (2016). Fiducial inference for Birnbaum-Saunders distribution. Journal of Statistical Computation and Simulation, 86(9), 1673-1685.
Lu, M. C., & Chang, D. S. (1997). Bootstrap prediction intervals for the Birnbaum-Saunders distribution. Microelectronics Reliability, 37(8), 1213-1216.
Ng, H. K. T., Kundu, D., & Balakrishnan, N. (2003). Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Computational Statistics and Data Analysis, 43(3), 283-298.
Niu, C., Guo, X., Xu, W., & Zhu, L. (2014). Comparison of several Birnbaum-Saunders distributions. Journal of Statistical Computation and Simulation, 84(12), 2721-2733.
Padgett, W. J., & Tomlinson, M. A. (2003). Lower confidence bounds for percentiles of Weibull and Birnbaum-Saunders distributions. Journal of Statistical and Simulation, 73(6), 429-443.
Puggard, W., Niwitpong, S-A., & Niwitpong, S. (2022). Confidence intervals for comparing the variances of two independent Birnbaum-Saunders distributions. Symmetry, 14(1492), 1-12.
Vilca, F., Sanhueza, A., Leiva, V., & Christakos, G. (2010). An extended Birnbaum-Saunders model and its application in the study of environmental quality in Santiago, Chile. Stochastic Environmental Research and Risk Assessment, 24(5), 771-782.
Wakefield, J. C., Gelfand, A. E., & Smith, A. F. M. (1991). Efficient generation of random variates via the ratio-of-uniforms method. Statistics and Computing, 1, 129-133.
Wang, B. X. (2012). Generalized interval estimation for the Birnbaum-Saunders distribution. Computational Statistics and Data Analysis, 56(12), 4320-4326.
Wang, M., Sun, X., & Park, C. (2016). Bayesian analysis of Birnbaum-Saunders distribution via the generalized ratio-of-uniforms method. Computational Statistics, 31, 207-225.
Wu, J., & Wong, A. C. M. (2004). Improved interval estimation for the two-parameter Birnbaum-Saunders distribution. Computational Statistics and Data Analysis, 47(4), 809-821.
Xu, A., & Tang, Y. (2010). Reference analysis for Birnbaum-Saunders distribution. Computational Statistics and Data Analysis, 54(1), 185-192.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Warisa Thangjai , Sa-Aat Niwitpong
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.