Immunomodulator Effect of Polyherbal Extract Turmeric-Meniran on Macrophages Profile of Mice Cancer Model by DMBA Injection

Authors

  • Sapti Puspitarini Science Education Study Program, Mathematics and Natural Sains Faculty, State University of Surabaya, 60231 Surabaya, Indonesia
  • Haidar Azzamudin bBiology Department, Mathematics and Natural Sains Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Maria Ulinnuha Medical Study Program, Medical Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Alya H. Puspitoputri Medical Study Program, Medical Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Shafanony Khansa Medical Study Program, Medical Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Sri Widyarti Biology Department, Mathematics and Natural Sains Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Nashi Widodo Biology Department, Mathematics and Natural Sains Faculty, Brawijaya University, 66145 Malang, Indonesia
  • Muhaimin Rifa'i Biology Department, Mathematics and Natural Sains Faculty, Brawijaya University, 66145 Malang, Indonesia

DOI:

https://doi.org/10.11113/mjfas.v20n2.3332

Keywords:

Anticancer, cancer, herbal combination, herbal medicine, macrophage, immunomodulator

Abstract

The immune system has responsibility for various infections, including cancer. Macrophage cells are divided into Macrophage 1 (M1) and Macrophage 2 (M2) based on polarization against cancer cells. Alternative medicine, such as herbal medicine, have potential to modulate the immune system. This study was conducted to evaluate the potential of the combination of Meniran and Turmeric extracts for regulating immune system cells, especially macrophage cells profile against cancer. This experiment was used Mus musculus cancer model that were injected subcutaneously with 7,12-dimethylbenz[a]anthracene (DMBA) 45 mg/kg body weight. Animal models were treated with Meniran and Turmeric extract combination for 2 weeks. The immunocompetent cell parameters were analyzed using flow cytometry, with markers CD11b cells and cytokines secreted in macrophage [i.e., interleukin (IL)-6, IL-10, also tumor necrosis factor α (TNF-α)]. The study showed that DMBA injection on mice increased the cell level of CD11b+ and CD11b+IL10+ (M2), at the same time decreased the cell level of M1, i.e., CD11b+IL6+ and CD11b+TNF-α+ compared with the Normal group. The Meniran and Turmeric extract combination treatment on DMBA-injected mice decreased the level of the cells of CD11b+ and CD11b+IL10+, meanwhile it increased the level of the cells of CD11b+IL6+ and CD11b+TNF-α+. The result indicated that the Meniran and Turmeric combination had the potential to modulate the immune system, especially macrophage cells profile against cancer.

References

Abdalla, D. R., Aleixo, A. A. R., Murta, E. F. C., & Michelin, M. A. (2014). Innate immune response adaptation in mice subjected to administration of DMBA and physical activity. Oncology Letters, 7(3), 886-890. https://doi.org/10.3892/ol.2013.1774.

Aj, C., Am, F., & L, M. (2017). Contribution of adipose tissue to development of cancer. Comprehensive Physiology, 8(1), 237-282. https://doi.org/10.1002/cphy.c170008.

Alessandra-Perini, J., Perini, J. A., Rodrigues-Baptista, K. C., de Moura, R. S., Junior, A. P., dos Santos, T. A.,& Machado, D. E. (2018). Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complementary and Alternative Medicine, 18(1), 116. https://doi.org/10.1186/s12906-018-2183-z.

Bazm, M. A., Naseri, L., & Khazaei, M. (2018). Methods of inducing breast cancer in animal models: A systematic review. World Cancer Research Journal, 5(4), 17.

Cassetta, L., Fragkogianni, S., Sims, A. H., Swierczak, A., Forrester, L. M., Zhang, H., & Pollard, J. W. (2019). Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell, 35(4), 588-602.e10. https://doi.org/10.1016/j.ccell.2019.02.009.

Chandrasekaran, C. V., Sundarajan, K., Edwin, J. R., Gururaja, G. M., Mundkinajeddu, D., & Agarwal, A. (2013). Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction. Pharmacognosy Research, 5(2), 71-79. https://doi.org/10.4103/0974-8490.110527.

Chudapongse, N., Kamkhunthod, M., & Poompachee, K. (2010). Effects of Phyllanthus urinaria extract on HepG2 cell viability and oxidative phosphorylation by isolated rat liver mitochondria. Journal of Ethnopharmacology, 130(2), 315-319. https://doi.org/10.1016/j.jep.2010.05.010.

Gao, J., Lauer, F. T., Mitchell, L. A., & Burchiel, S. W. (2007). Microsomal expoxide hydrolase is required for 7,12-dimethylbenz[a]anthracene (DMBA)-induced immunotoxicity in mice. Toxicological Sciences: An Official Journal of the Society of Toxicology, 98(1), 137-144. https://doi.org/10.1093/toxsci/kfm089.

Grugan, K. D., McCabe, F. L., Kinder, M., Greenplate, A. R., Harman, B. C., Ekert, J. E., & Brezski, R. J. (2012). Tumor-associated macrophages promote invasion while retaining Fc-dependent anti-tumor function. The Journal of Immunology, 189(11), 5457-5466. https://doi.org/10.4049/jimmunol.1201889.

Hao, N.-B., Lü, M.-H., Fan, Y.-H., Cao, Y.-L., Zhang, Z.-R., & Yang, S.-M. (2012). Macrophages in tumor microenvironments and the progression of tumors. Clinical and Developmental Immunology, 2012, 1-11. https://doi.org/10.1155/2012/948098.

Hosseinzade, A., Sadeghi, O., Naghdipour Biregani, A., Soukhtehzari, S., Brandt, G. S., & Esmaillzadeh, A. (2019). Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00051.

Huang, S. T., Yang, R. C., Lee, P. N., Yang, S. H., Liao, S. K., Chen, T. Y., & Pang, J. H. S. (2006). Anti-tumor and anti-angiogenic effects of Phyllanthus urinaria in mice bearing Lewis lung carcinoma. International Immunopharmacology, 6(6), 870-879. https://doi.org/10.1016/j.intimp.2005.12.010.

Jantan, I., Haque, Md. A., Ilangkovan, M., & Arshad, L. (2019). An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Frontiers in Pharmacology, 10, 878. https://doi.org/10.3389/fphar.2019.00878.

Karimi, B., Ashrafi, M., Shomali, T., & Yektaseresht, A. (2019). Therapeutic effect of simvastatin on DMBA-induced breast cancer in mice. Fundamental & Clinical Pharmacology, 33(1), 84-93. https://doi.org/10.1111/fcp.12397.

Macciò, A., Gramignano, G., Cherchi, M. C., Tanca, L., Melis, L., & Madeddu, C. (2020). Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Scientific Reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-63276-1.

Ortuño-Sahagún, D., Zänker, K., Rawat, A. K. S., Kaveri, S. V., & Hegde, P. (2017). Natural immunomodulators. Journal of Immunology Research, 2017, e7529408. https://doi.org/10.1155/2017/7529408.

Pan, X.-Q. (2012). The mechanism of the anticancer function of M1 macrophages and their use in the clinic. Chinese Journal of Cancer, 31(12), 557-563. https://doi.org/10.5732/cjc.012.10046.

Putra, W. E., & Rifa’i, M. (2019). Immunomodulatory activities of sambucus javanica extracts in DMBA-exposed BALB/c Mouse. Advanced Pharmaceutical Bulletin, 9(4), 619-623. https://doi.org/10.15171/apb.2019.071.

Ramadhani, A. H., Nafisah, W., Isnanto, H., Sholeha, T. K., Jatmiko, Y. D., Tsuboi, H., & Rifa’i, M. (2021). immunomodulatory effects of cyperus rotundus extract on 7,12 Dimethylbenz[a]anthracene (DMBA) exposed BALB/c Mice. Pharmaceutical Sciences, 27(1), 46–55. https://doi.org/10.34172/PS.2020.61.

Puspitarini, S., Widyarti, S., Widodo, N., & Rifa'i M. (2022). Polyherbal effect between Phyllanthus urinaria and Curcuma longa as an anticancer and antioxidant. Research Journal of Pharmaeutical and Technology.

Russo, J., & Russo, I. H. (1996). Experimentally induced mammary tumors in rats. Breast Cancer Research and Treatment, 39(1), 7-20. https://doi.org/10.1007/BF01806074.

Sham, N. F. R., Hasani, N. A. H., Idorus, M. Y., Karim, M. K. A., Fuad, S. B. S. A., Hasbullah, H. H., & Ibahim, M. J. (2023). Optimization of CTLA-4 and PD-1 proteins in EMT6 mouse mammary cancer cells by Western blot. Malaysian Journal of Fundamental and Applied Sciences, 19(2), 194-201. https://doi.org/10.11113/mjfas.v19n2.2700.

Sousa, S., Brion, R., Lintunen, M., Kronqvist, P., Sandholm, J., Mönkkönen, J., … Määttä, J. A. (2015). Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Research : BCR, 17(1), 101. https://doi.org/10.1186/s13058-015-0621-0.

Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., & Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022-7029. https://doi.org/10.1158/0008-5472.CAN-04-1449.

Zhou, J., Tang, Z., Gao, S., Li, C., Feng, Y., & Zhou, X. (2020). Tumor-associated macrophages: recent insights and therapies. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.00188.

Downloads

Published

26-06-2024

Issue

Section

Article