Impact of Aluminum Oxide & Silicon Dioxide on Nanofluid Flow Over a Stretching Sheet with Heat Transfer: Analytical Solution


  • Wan Nura'in Nabilah Noranuar Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Ahmad Qushairi Mohamad Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Lim Yeou Jiann Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Sharidan Shafie Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Mohd Anuar Jamaludin Department of Mathematics, Universiti Pertahanan Nasional Malaysia, 57000, Kuala Lumpur, Malaysia



Stretching sheet, Nanofluid, Casson fluid, Laplace transform method, Heat transfer


A stretchable surface is one of the products features that numerous industrial and engineering field has been taken into consideration due to of its benefit. However, most of the fluid mechanic simulation for stretchable surface has been solved numerically and there is very limited theoretical study discovering this problem. Therefore, the present study investigated the convective Casson nanofluid flow and heat transfer over a linear stretching sheet. The aluminum oxide  and silicon dioxide  are considered. The analytical resolution of the governing problem yields velocity and temperature solutions using the Laplace transform method. Graphical representation illustrates how nanoparticle volume fraction affects velocity and temperature distribution profiles. Higher nanoparticle volume fractions slow down nanofluid flow and elevate temperature profiles. This investigation establishes a robust foundation for future research utilizing numerical methods.


Stretching sheet, Nanofluid, Casson fluid, Laplace transform method, Heat transfer[1] Jafar, A. B., Shafie, S., Ullah, I., Safdar, R., Jamshed, W., Pasha, A. A., Rahman, M. M., Hussain, S. M., Rehman, A., El Din, E., & Eid, M. R. (2022). Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet. Sci Rep., 12(1), 14679. Doi:10.1038/s41598-022-18761-0

Crane, L. J. (1970). Flow past a stretching plate. Kurze Mitteilungen - Brief Reports - Communications br~ves, 21.

Das, S., Chakraborty, S., Jana, R. N., & Makinde, O. D. (2015). Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36(12), 1593-1610. Doi:10.1007/s10483-015-2003-6.

S. Manjunatha, V. P., B.J. Gireesha, & Ali J. Chamkha. (2022). Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. Journal of Applied and Computational Mechanics, 8(4), 1279-1286. Doi:10.22055/JACM.2021.37698.3067.

Sreedevi, G., Raghavendra Rao, R., Prasada Rao, D. R. V., & Chamkha, A. J. (2016). Combined influence of radiation absorption and Hall current effects on MHD double-diffusive free convective flow past a stretching sheet. Ain Shams Engineering Journal, 7(1), 383-397. Doi:10.1016/j.asej.2015.11.024.

Hosseinzadeh, K., Afsharpanah, F., Zamani, S., Gholinia, M., & Ganji, D. D. (2018). A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Studies in Thermal Engineering, 12, 228-236. Doi:10.1016/j.csite.2018.04.008.

Hamad, M. A. A. (2011). Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. International Communications in Heat and Mass Transfer, 38(4), 487-492. Doi:10.1016/j.icheatmasstransfer.2010.12.042.

Ebaid, A., & Al Sharif, M. A. (2015). Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids. Zeitschrift für Naturforschung A, 70(6), 471-475. Doi:10.1515/zna-2015-0125.

Saleh, H., Alali, E., & Ebaid, A. (2018). Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 206-212. Doi:10.1016/j.jaubas.2016.12.001.

Hussanan, A., Qasim, M., & Chen, Z. M. (2020). Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Physica A: Statistical Mechanics and its Applications, 550, 123957.

Afridi, M. I., Qasim, M., & Makinde, O. D. (2019). Entropy generation due to heat and mass transfer in a flow of dissipative elastic fluid through a porous medium. Journal of Heat Transfer, 141(2), 022002.

Qasim, M. (2013). Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alexandria Engineering Journal, 52(4), 571-575.

Lu, D., Afridi, M. I., Allauddin, U., Farooq, U., & Qasim, M. (2020). Entropy generation in a dissipative nanofluid flow under the influence of magnetic dissipation and transpiration. Energies, 13(20), 5506.

Maranna, T., Sneha, K. N., Mahabaleshwar, U. S., Sarris, I. E., & Karakasidis, T. E. (2022). An effect of radiation and MHD Newtonian fluid over a stretching/shrinking sheet with CNTs and mass transpiration. Applied Sciences, 12(11). Doi:10.3390/app12115466.

Aly, E. H., & Ebaid, A. (2016). Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium. Journal of Molecular Liquids, 215, 625-639. Doi:10.1016/j.molliq.2015.12.108.

Mahabaleshwar, U. S., Anusha, T., Beg, O. A., Yadav, D., & Botmart, T. (2022). Impact of Navier's slip and chemical reaction on the hydromagnetic hybrid nanofluid flow and mass transfer due to porous stretching sheet. Sci Rep, 12(1), 10451. Doi:10.1038/s41598-022-14692-y.

Afridi, M. I., Qasim, M., & Shafie, S. (2017). Entropy generation in hydromagnetic boundary flow under the effects of frictional and Joule heating: Exact solutions. The European Physical Journal Plus, 132, 1-11.

Chen, Z. M., Afridi, M. I., Riaz, N., & Qasim, M. (2024). Impact of porous and magnetic dissipation on dissipative fluid flow and heat transfer in the presence of Darcy-Brinkman porous medium. Journal of Porous Media. 27(3), 45-65.

Bhattacharyya, K., Hayat, T., & Alsaedi, A. (2014). Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94(6), 522-528. Doi:10.1002/zamm.201200031.

Alghamdi, M., Wakif, A., Thumma, T., Khan, U., Baleanu, D., & Rasool, G. (2021). Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. Case Studies in Thermal Engineering, 28, 101428.

Khan, M. R., Pan, K., Khan, A. U., & Nadeem, S. (2020). Dual solutions for mixed convection flow of SiO2− Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Physica A: Statistical Mechanics and its Applications, 547, 123959.

Qasim, M., & Noreen, S. (2014). Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. The European Physical Journal Plus, 129, 1-8.

Qasim, M., & Ahmad, B. (2015). Numerical solution for the blasius flow in a Casson fluid with viscous dissipation and convective boundary conditions. Heat Transfer Research, 46(8).

Butt, A. S., Tufail, M. N., & Ali, A. (2016). Three-dimensional flow of a magnetohydrodynamic Casson fluid over an unsteady stretching sheet embedded into a porous medium. Journal of Applied Mechanics and Technical Physics, 57, 283-292.

Raza, A., Khan, S. U., Farid, S., Khan, M. I., Sun, T.-C., Abbasi, A., Khan, M. I., & Malik, M. Y. (2021). Thermal activity of conventional Casson nanoparticles with ramped temperature due to an infinite vertical plate via fractional derivative approach. Case Studies in Thermal Engineering, 27. Doi:10.1016/j.csite.2021.101191.