Hybrid Nanofluids Flow over a Vertical Cylinder with Heat Source/Sink and Prescribed Surface Heat Flux

Authors

  • Farizza Haniem Sohut Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Siti Khuzaimah Soid College of Computing, Informatics and Mathematics Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Anuar Ishak Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n2.3249

Keywords:

Heat Source/Sink, Stretching Cylinder, Hybrid Nanofluids, Heat Flux, Dual Solutions, Stability Analysis

Abstract

This work presents the steady mixed convection in Al2O3-Cu/water hybrid nanofluids along a vertically stretching/shrinking cylinder with the prescribed surface heat flux and the effects of heat source/sink. The governing hybrid nanofluids model was simplified using a similarity transformation. The bvp4c solver in MATLAB software is used to solve the hybrid nanofluids flow problem numerically. It is observed that two outcomes are feasible for the assisting and opposing flow regions  as well as stretching and shrinking cases . Besides that, the effects of the dimensionless parameters are analyzed graphically and tabularly. In particular, the critical point is reduced by 3% when the curvature parameter goes from 0 to 0.1 and from 0.1 to 0.2 when the cylinder is stretched. This means that the higher curvature parameter could delay the process of separating the boundary layer. It is noted that the positive heat source will decrease the fluid motions and reduce the shear stress on the surface. Moreover, Al2O3-Cu/water hybrid nanofluids have better performance in heat transfer and velocity of fluid flow than Al2O3/water nanofluids.

References

Hiemenz, K. (1911). Die Grenzschicht an einem inden gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J., 326, 321-324.

Mahapatra, T.R., & Gupta, A. S. (2002). Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf Und Stoffuebertragung, 38, 517-5121.

Ishak, A., Nazar, R., & Pop I. (2007). Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet. J Heat Transfer,129, 1087-1090.

Wang, C.Y. (2008). Stagnation flow towards a shrinking sheet. Int J Non Linear Mech, 43, 377-82.

Ishak, A. (2009). Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux. J Phys A Math Theor, 42, 195501.

Chen, B., Tian, J. M., & Zhou, Z. F. (2019). The fundamental and application of surface heat flux estimation by inverse method in cryogen spray cooling. In: Suvanjan Bhattacharyya, Mehta R, Ardekani MM, Biswas R, editors. Inverse Heat Conduct. Heat Exch., Rijeka: IntechOpen. 1-19.

Ishak, A., Merkin, J. H., Nazar, R., & Pop, I. (2008). Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux. Zeitschrift Fur Angew Math Und Phys, 59,100-23.

Ishak, A., Nazar, R., & Pop. I. (2009). MHD flow towards a permeable surface with prescribed wall heat flux. Chinese Phys Lett, 26, 014702.

Ishak, A., Nazar, R., & Pop, I. (2009). MHD convective flow adjacent to a vertical surface with prescribed wall heat flux. Int Commun Heat Mass Transf, 36, 554-557.

Awaludin, I. S., Ahmad, R., & Ishak, A. (2020). On the stability of the flow over a shrinking cylinder with prescribed surface heat flux. Propuls Power Res, 9, 181-187.

Ali, F. M., Nazar, R., & Arifin, N. M. (2010). MHD viscous flow and heat transfer induced by a permeable shrinking sheet with prescribed surface heat flux. WSEAS Trans Math, 9, 365-375.

Aman, F., & Ishak, A. (2010). Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet with prescribed surface heat flux. Heat Mass Transf Und Stoffuebertragung, 46, 615-620.

Yacob, N. A., & Ishak, A. (2011). MHD flow of a micropolar fluid towards a vertical permeable plate with prescribed surface heat flux. Chem Eng Res Des, 89, 2291-2297.

Waqas, H., Hussain, S., Sharif, H., & Khalid, S. (2017). MHD Forced Convective Flow of Micropolar Fluids Past a Moving Boundary Surface with Prescribed Heat Flux and Radiation. Br J Math Comput Sci, 21, 31270.

Waini, I., Ishak, A., & Pop, I. (2021). Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux. Int J Numer Methods Heat Fluid Flow, 31, 1987-2004.

Daungthongsuk, W., & Wongwises, S. (2007). A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev, 11, 797-817.

Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf, 54, 4051-68.

Dhanai, R., Rana, P., & Kumar, L. (2016). MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol, 288, 140-50.

Hayat, T., Imtiaz, M., & Alsaedi, A. (2016). Unsteady flow of nanofluid with double stratification and magnetohydrodynamics. Int J Heat Mass Transf, 92, 100-109.

Zaimi, K., Ishak, A., & Pop, I. (2014). Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Sci Rep, 4, 4-11.

Khashi’ie, N. S., Arifin, N. M., Hafidzuddin, E. H., Wahi, N., & Ilias, M. R. (2019). Magnetohydrodynamics (MHD) flow and heat transfer of a doubly stratified nanofluid using Cattaneo-Christov model. Univers J Mech Eng, 7, 206-214.

Khan, M., Hussain, A., Malik, M. Y., Salahuddin, T., & Khan, F. (2017). Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: A numerical investigation. Results Phys, 7, 2837-2844.

Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2011). Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surfaces A Physicochem Eng Asp, 388, 41-48.

Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 38, 54-60.

Takabi, B., & Salehi, S. (2014). Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng, 2014, 147059.

Devi, S. S. U., Devi, S. P. A. (2016). Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys., 94(5), 490-496.

Devi, S. S. U., & Devi, S. P. A. (2017). Heat transfer enhancement of Cu−Al2O3/water hybrid nanofluid flow over a stretching sheet. J Niger Math Soc., 36(2), 419-433.

Rostami, M. N., Dinarvand, S., & Pop, I. (2018). Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chinese J Phys., 56(5), 2465-2478.

Subhani, M., & Nadeem, S. (2019). Numerical analysis of micropolar hybrid nanofluid. Appl Nanosci, 9(4), 447-459.

Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2020). Unsteady three-dimensional MHD non-axisymmetric homann stagnation point flow of a hybrid nanofluid with stability analysis. Mathematics, 8(5), 784.

Sohut, F. H., Ishak, A., & Soid, S. K. (2023). MHD stagnation point of Blasius flow for micropolar hybrid nanofluid toward a vertical surface with stability analysis. Symmetry (Basel),15(4), 920.

Jamaludin, A., Naganthran, K., Nazar, R., & Pop, I. (2020). MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Eur J Mech B/Fluids, 84, 71-80.

Gorla, R. S. R., Siddiqa, S., Mansour, M. A., Rashad, A. M., & Salah, T. (2017). Heat source/sink effects on a hybrid nanofluid-filled porous cavity. J Thermophys Heat Transf, 31, 847-857.

Armaghani, T., Sadeghi, M. S., Rashad, A. M., Mansour, M. A., Chamkha, A. J., Dogonchi, A.S, et al. (2021). MHD mixed convection of localized heat source/sink in an Al2O3-Cu/water hybrid nanofluid in L-shaped cavity. Alexandria Eng J, 60, 2947-2962.

Yaseen, M., Kumar, M., & Rawat, S. K. (2021). Assisting and opposing flow of a MHD hybrid nanofluid flow past a permeable moving surface with heat source/sink and thermal radiation. Partial Differ Equations Appl Math, 4,100168.

Farooq, U., Tahir, M., Waqas, H., Muhammad, T., Alshehri, A., & Imran, M. (2022). Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet. Sci Rep, 12, 12254.

Sadighi, S., Afshar, H., Jabbari, M. & Ashtiani, H. A. D. (2023). Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions. Case Stud Therm Eng., 49, 103345.

Oztop, H. F., & Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow, 29(5), 1326-1336.

Waini, I., Ishak, A., & Pop, I. (2019). Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Int J Numer Methods Heat Fluid Flow, 29(12), 4875-4894.

Khashi’ie, N. S., Arifin, N. M., & Pop, I. (2020). Mixed convective stagnation point flow towards a vertical riga plate in hybrid Cu-Al2O3/water nanofluid. Mathematics, 8(6), 912.

Merkin, J. H. (1986).On dual solutions occurring in mixed convection in a porous medium. J Eng Math, 20, 171-179.

Weidman, P. D., Kubitschek, D. G., & Davis, A. M. J. (2006). The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci, 44, 730-737.

Harris, S. D., Ingham, D. B., & Pop, I. (2009). Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Media, 77(2), 267-85.

Devi, S. S. U., & Devi, S. P. A. (2017). Heat transfer enhancement of Cu−Al2O3/water hybrid nanofluid flow over a stretching sheet. J Niger Math Soc, 36(2), 419-433.

Khashi’ie, N. S., Arifin, N. M., Merkin, J. H., Yahaya, R. I., & Pop, I. (2021). Mixed convective stagnation point flow of a hybrid nanofluid toward a vertical cylinder. Int J Numer Methods Heat Fluid Flow, 31(12), 3689-3710.

Downloads

Published

24-04-2024