Identification of MiR398 and Its Regulatory Roles in Terpenoid Biosynthesis of Persicaria odorata
DOI:
https://doi.org/10.11113/mjfas.v20n2.3248Keywords:
MicroRNA, Persicaria odorata, plant stress, terpenoid biosynthesis, gene expression regulationAbstract
Persicaria odorata is an herbaceous plant with antifungal and antibacterial properties. The plant produces secondary metabolites, including phenols, sulphur-containing compounds and terpenoids, in response to biotic and abiotic stresses. Terpenoids in P. odorata are synthesized through the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. 1-deoxy-D-xylulose-5phosphate isomerase (DXR) is a rate-limiting enzyme in the MEP pathway and may be regulated by microRNA (miRNA) miR398. There is a lack of evidence showing miR398 regulation in terpenoid biosynthesis in P. odorata through DXR-targeting. The study aimed to verify the stem-loop structure of miR398 and analyse its expression towards the target gene, DXR, in treated and control P. odorata. RNA was quantified and qualitatively analysed using a Nanodrop spectrophotometer and agarose gel electrophoresis. The stem loop of miR398 was verified using reverse transcriptase PCR (RT-PCR) and agarose gel electrophoresis. The expression of miR398 and DXR was compared between control and treated samples. Treated leaves were punctured with needles and left for 48h before harvest. Gene expressions were quantified and normalised using reference genes. The stem-loop structure of miR398 was confirmed, despite possible primer mismatches and unspecific binding. This step was essential before comparing and assessing the gene expression of miR398 and DXR. A decrease in abundance of miR398 whereas in increase in abundance was in the treated sample compared to the control sample indicating that miR398 negatively regulated DXR under stress conditions, suggesting an increase in terpenoid synthesis as a defence mechanism. DXR acts as a rate-limiting enzyme in the MEP metabolic pathway. Further studies are needed to quantify the effects of miR398 on terpenoid biosynthesis after wounding in P. odorata.
References
Shavandi, M. A., Haddadian, Z., Ismail, M. H. S. (2012). Eryngium foetidum L., Coriandrum sativum and Persicaria odorata L.: A review. Journal of Aisan Scientific Research, 2, 410-426. Doi: http://aessweb.com/journal-detail.php?id=5003.
Rejeb, I., Pastor, V., Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3, 458-475. Doi:10.3390/plants3040458.
Dresselhaus, T., Hückelhoven, R. (2018). Biotic and Abiotic stress responses in crop plants. Agronomy, 8, 267. Doi:10.3390/agronomy8110267.
4Nguen, V. T., Nguyen, M. T., Nguyen, N. Q., Truc, T. T. (2020). Phytochemical screening, antioxidant activities, total phenolics and flavonoids content of leaves from Persicaria odorata Polygonaceae. IOP Conf Ser-Mat Sci. 991. Doi:10.1088/1757-899x/991/1/012029.
Yanpirat, P., Vajrodaya, S. (2015). Antifungal activity of Persicaria odorata extract against anthracnose caused by Colletotrcihum capsici and Colletotrichum gloeosporioides. Malaysian Applied Biology, 44, 69-73.
Řebíčková, K., Bajer, T., Šilha, D., Houdková, M., Ventura, K., Bajerová, P. (2020). Chemical composition and determination of the antibacterial activity of essential oils in liquid and vapor phases extracted from two different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae). Molecules. 25, 2432. Doi:10.3390/molecules25102432.
Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198-202. Doi: https://doi.org/10.1016/j.micpath.2018.08.034.
Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol, 148, 63-106. Doi:10.1007/10_2014_295.
Pütter, K. M., Van Deenen, N., Unland, K., Prüfer, D., Schulze Gronover, C. (2017). Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biology. 17. Doi:10.1186/s12870-017-1036-0.
Ridzuan, P. M., Hairul Aini, H., Norazian, M. H., Shah, A., Roesnita, Aminah, K. S. (2013). Antibacterial and Antifungal Properties of Persicaria odorata Leaf Against Pathogenic Bacteria and Fungi. The Open Conference Proceedings Journal, 4, 71-74. Doi:http://dx.doi.org/10.2174/2210289201304020071.
Grabowska, A., Bhat, S. S., Smoczynska, A., Bielewicz, D., Jarmolowski, A., Kulinska, Z. S. (2020). Regulation of plant microRNA biogenesis. Plant microRNAs, Shaping Development and Environmental Responses, Miguel, C., Dalmay, T., Chaves, I., Eds. Springer Nature. 1, 3-24.
Sobhani Najafabadi, A., Naghavi, M. R. (2018). Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene, 645, 41-47. Doi: https://doi.org/10.1016/j.gene.2017.12.035.
Zhao, S., Wang, X., Yan, X., Guo, L., Mi, X., Xu, Q., Zhu, J., Wu, A., Liu, L., Wei, C. (2018). Revealing of MicroRNA involved regulatory gene networks on terpenoid biosynthesis in Camellia sinensis in different growing time points. Journal of Agricultural and Food Chemistry, 66, 12604-12616. Doi:10.1021/acs.jafc.8b05345.
Samad, A. F. A., Rahnamaie-Tajadod, R., Sajad, M., Jani, J., Murad, A. M. A., Noor, N. M., Ismail, I. (2019). Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics, 20, 586. Doi:10.1186/s12864-019-5954-0.
Tang, S., Wang, Y., Li, Z., Gui, Y., Xiao, B., Xie, J., Zhu, Q.-H., Fan, L. (2012). Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biology. 12, 28. Doi:10.1186/1471-2229-12-28.
Gismondi, A., Di Marco, G., Canini, A. (2017). Detection of plant microRNAs in honey. PLoS One, 12, e0172981. Doi:10.1371/journal.pone.0172981.
Garcia-Alegria, A. M., Anduro-Corona, I., Perez-Martinez, C. J., Guadalupe Corella-Madueno, M. A., Rascon-Duran, M. L., Astiazaran-Garcia, H. (2020). Quantification of DNA through the NanoDrop spectrophotometer: methodological validation using standard reference material and Sprague Dawley Rat and Hhuman DNA. Int J Anal Chem., 2020, 8896738. Doi:10.1155/2020/8896738.
Passos, M. L., Saraiva, M. F. S., Lúcia, M. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement, 135, 896-904. Doi:10.1016/j.measurement.2018.12.045.
Aranda, P. S., LaJoie, D. M., Jorcyk, C. L. (2012). Bleach gel: A simple agarose gel for analyzing RNA quality. Electrophoresis, 33, 366-369. Doi:10.1002/elps.201100335.
Garcia-Elias, A., Alloza, L., Puigdecanet, E., Nonell, L., Tajes, M., Curado, J., Enjuanes, C., Diaz, O., Bruguera, J., Marti-Almor, J., et al. (2017). Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs. Sci Rep, 7, 7725. Doi:10.1038/s41598-017-08134-3.
Masago, K., Fujita, S., Oya, Y., Takahashi, Y., Matsushita, H., Sasaki, E., Kuroda, H. (2021). Comparison between fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of DNA and RNA extracted from frozen and FFPE tissues from lung cancer patients: A real-world use of genomic tests. Medicina. 57, 1375. Doi:10.3390/medicina57121375.
Yockteng, R., Almeida, A. M. R., Yee, S., Andre, T., Hill, C., Specht, C. D. (2013). A method for extracting high‐quality RNA from diverse plants for next‐generation sequencing and gene expression analyses. Applications in Plant Sciences. 1, 1300070. Doi:10.3732/apps.1300070.
George, A. (2018). Simple and efficient method for functional RNA extraction from tropical medicinal plants rich in secondary metabolites. Tropical Plant Research, 5, 8-13. Doi:10.22271/tpr.2018.v5.i1.002.
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K. (2001). Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Doi:10.1002/0471142727.mba03ds76.
Koetsier, G., Cantor, E. (2019). A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers. New England Biolabs Inc, 1-8.
Sah, S. K., Kaur, G., Kaur, A. (2014). Rapid and reliable method of high-quality RNA extraction from diverse plants. American Journal of Plant Sciences, 05, 3129-3139. Doi:10.4236/ajps.2014.521329.
Inglis, P. W., Pappas, M. D. C., R. Resende, L. V., Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLOS ONE, 13, e0206085. Doi:10.1371/journal.pone.0206085.
Kanani, P., Shukla, Y. M., Modi, A. R., Subhash, N., Kumar, S. 2019. Standardization of an efficient protocol for isolation of RNA from Cuminum cyminum. J King Saud Univ Sci. 31, 1202-1207. Doi: 10.1016/j.jksus.2018.12.008.
Uchida, S., Adams, J. C. (2019). Physiological roles of non-coding RNAs. Am J Physiol Cell Physiol, 317, C1-C2. Doi:10.1152/ajpcell.00114.2019.
Skrypina, N. A., Timofeeva, A. V., Khaspekov, G. L., Savochkina, L. P. (2003). Beabealashvilli, R. Total RNA suitable for molecular biology analysis. J Biotechnol, 105, 1-9. Doi:10.1016/s0168-1656(03)00140-8.
Ueno, D., Yamasaki, S., Kato, K. (2022). Methods for detecting RNA degradation intermediates in plants. Plant Sci. 318, 111241. Doi:10.1016/j.plantsci.2022.111241.
Zhang, N., Hu, G., Myers, T. G., Williamson, P. R. (2019). Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol, 126, e78. Doi:10.1002/cpim.78.
Van Wynsberghe, P. M., Chan, S. P., Slack, F. J., Pasquinelli, A. E. (2011). Analysis of microRNA expression and function. Methods Cell Biol, 106, 219-252. Doi:10.1016/B978-0-12-544172-8.00008-6.
Annese, T., Tamma, R., De Giorgis, M., Ribatti, D. (2020). microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol 10, 581007. Doi:10.3389/fonc.2020.581007.
Pagano, L., Rossi, R., Paesano, L., Marmiroli, N., Marmiroli, M. (2021). miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany, 184. Doi:10.1016/j.envexpbot.2020.104369.
Gillespie, P., Ladame, S., O'Hare, D. (2019). Molecular methods in electrochemical microRNA detection. The Analyst, 144, 114-129. Doi:10.1039/c8an01572d.
Ouyang, T., Liu, Z., Han, Z., Ge, Q. (2019). MicroRNA detection specificity: Recent advances and future perspective. Anal Chem, 91, 3179-3186. Doi:10.1021/acs.analchem.8b05909.
Cheng, Y., Dong, L., Zhang, J., Zhao, Y., Li, Z. (2018). Recent advances in microRNA detection. Analyst, 143, 1758-1774. Doi:10.1039/C7AN02001E.
Saddhe, A. A., Malvankar, M. R., Kumar, K. (2018). Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata. PeerJ, 6, e5226. Doi:10.7717/peerj.5226.
Shukla, P., Reddy, R. A., Ponnuvel, K. M., Rohela, G. K., Shabnam, A. A., Ghosh, M. K., Mishra, R. K. (2019). Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Molecular Biology Reports, 46, 1809-1817, doi:10.1007/s11033-019-04631-y.
Joseph, J. T., Poolakkalody, N. J., Shah, J. M. (2018). Plant reference genes for development and stress response studies. Journal of Biosciences, 43, 173-187. Doi:10.1007/s12038-017-9728-z.
Ferreira, M. J., Silva, J., Pinto, S. C., Coimbra, S. I. (2023). Choose you: Selecting accurate reference genes for qPCR expression analysis in reproductive tissues in Arabidopsis thaliana. Biomolecules, 13, 463. Doi:10.3390/biom13030463.
Vaccaro, M., Bernal, V. O., Malafronte, N., De Tommasi, N., Leone, A. (2019). High yield of bioactive abietane diterpenes in Salvia sclarea hairy roots by overexpressing cyanobacterial DXS or DXR genes. Planta Medica, 85, 973-980.
Liu, Y., Yang, Z.-m., Xue, Z.-l., Qian, S.-h., Wang, Z., Hu, L.-x., Wang, J., Zhu, H., Ding, X.-m., Yu, F. (2018). Influence of site-directed mutagenesis of UbiA, overexpression of dxr, menA and ubiE, and supplementation with precursors on menaquinone production in Elizabethkingia meningoseptica. Process Biochemistry, 68, 64-72. Doi:10.1016/j.procbio.2018.01.022.
Salamon, S., Zok, J., Gromadzka, K., Blaszczyk, L. (2021). Expression patterns of miR398, miR167, and miR159 in the Interaction between bread wheat (Triticum aestivum L.) and pathogenic Fusarium culmorum and beneficial Trichoderma Fungi. Pathogens, 10. Doi:10.3390/pathogens10111461.
Leng, X., Wang, P., Zhu, X., Li, X., Zheng, T., Shangguan, L., Fang, J. (2017). Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. Funct Integr Genomics, 17, 697-710. Doi:10.1007/s10142-017-0565-9.
Sun, Z., Shu, L., Zhang, W., Wang, Z. (2020). Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic. Arabidopsis thaliana PeerJ., 8, e9105, Doi:10.7717/peerj.9105.
Li, J., Song, Q., Zuo, Z.-F., Liu, L. (2022). MicroRNA398: A master regulator of plant development and stress responses. International Journal of Molecular Sciences, 23, 10803. Doi:10.3390/ijms231810803.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nursyah Fitri Mahadi, Azman Abd Samad, Abdul Fatah A. Samad
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.