What is the Effect of a Magnetic Field on Dye Adsorption onto Graphite Carbon?

Authors

  • Nursyafreena Attan Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Desmilia Putri Ramadhani Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Asmi Munadhiroh Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Hadi Nur Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Jawa Timur 65145, Indonesia

DOI:

https://doi.org/10.11113/mjfas.v19n6.3243

Keywords:

Industrial dyes, Dye adsorption, Magnetic field

Abstract

This research explores the impact of magnetic fields on dye adsorption onto graphite carbon, utilizing electric currents to generate varying magnetic field strengths, as determined by the Biot-Savart law. The study demonstrates that even with small current magnitudes typically used in physics laboratories, the generated magnetic fields significantly influence dye adsorption. Through experiments with currents ranging from 1.5 A to 7.5 A, resulting in magnetic fields from 1.54 µT to 4.63 µT, we observed enhanced adsorption for congo red, methylene blue, and methyl orange. In contrast, phenol red exhibited a unique desorption pattern due to electrostatic repulsion. Temperature variations were noted but were considered to have a negligible effect on the adsorption behavior. The findings highlight the crucial role of magnetic energy density and the charge of dye molecules in the adsorption process, leading to the conclusion that magnetic fields, indeed, play a significant role in influencing dye adsorption onto graphite carbon, with potential applications in environmental conservation and industrial waste management.

References

Tian L., Liang F., Dong L., Li J., Jia Q., Zhang H., Yan S., & Zhang S. (2021). Preparation and enhanced adsorption properties for CO2 and dyes of amino-decorated hierarchical porous BCN aerogels. J. Am. Ceram. Soc., 104(2), 1110-1119. Doi: 10.1111/jace.17501.

Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal - A review. J. Environ. Manage., 90(8), 2313-2342. Doi: 10.1016/j.jenvman.2008.11.017.

Ayele, A., Getachew, D., Kamaraj, M., & Suresh, A. (2021). Phycoremediation of synthetic dyes: An effective and eco-friendly algal technology for the dye abatement. J. Chem., 2021. Doi: 10.1155/2021/9923643.

Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater., 168(2-3), 806-812. Doi: 10.1016/j.jhazmat.2009.02.097.

Tavassoli, N., Ansari, R., & Mosayebzadeh, Z. (2017). Synthesis and application of iron oxide/silica gel nanocomposite for removal of sulfur dyes from aqueous solutions. Arch. Hyg. Sci., 6(2), 214-220. Doi: 10.29252/archhygsci.6.2.214.

Al-Mhyawi, S. R., Abdel-Tawab, N. A. H., & El Nashar, R. M. (2023). Synthesis and characterization of orange peel modified hydrogels as efficient adsorbents for methylene blue (MB). Polymers (Basel)., 15(2). Doi: 10.3390/polym15020277.

Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega, 5(33), 20684-20697. Doi: 10.1021/acsomega.0c01905.

Khan, I. et al. (2022). Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 14(242). Doi: 10.5040/9781501365072.12105.

Liu, L., Li, Y., & Fan, S. (2019). Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7(12), 891. Doi: 10.3390/PR7120891.

Li, G., Zhu, W., Zhang, C., Zhang, S., Liu, L., Zhu, L., & Zhao, W. (2016). Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour. Technol., 206, 16-22. Doi: 10.1016/j.biortech.2015.12.087.

Wan, T., Yu, M., He, S., Wang, T., Wang, J., Jia, Y., & Tang, Q. (2023). Removal of Methylene blue from aqueous solution by magnetic hydrogel nanocomposite absorbents. J. Elastomers Plast., 55(2), 167-183. Doi: 10.1177/00952443221144737.

Far, H. S., Hasanzadeh, M., Nashtaei, M. S., Rabbani, M., Haji, A., & Hadavi Moghadam, B. (2020). PPI-dendrimer-functionalized magnetic metal-organic framework (Fe3O4@MOF@PPI) with high adsorption capacity for sustainable wastewater treatment. ACS Appl. Mater. Interfaces, 12(22), 25294-25303. Doi: 10.1021/acsami.0c04953.

Zhang, L., & Yang, K. (2020). Facilely magnetized CuZnFe2O4-activated carbon composite as an efficient recyclable adsorbent of cationic dyes. J. Chem. Eng. Data, 65(11), 5532-5544. Doi: 10.1021/acs.jced.0c00643.

Riaz, A., Kalsoom, U., Bhatti, H. N., Jesionowski, T., & Bilal, M. (2023). Citrus limon peroxidase-assisted biocatalytic approach for biodegradation of reactive colfax blue P3R and colfax blue R dyes. Bioprocess Biosyst. Eng., 46(3), 443-452. Doi: 10.1007/s00449-022-02802-z.

Adekola, F. A., Ayodele, S. B., & Inyinbor, A. A. (2019). Efficient rhodamine B removal using acid- and alkaline-activated Musa paradisiaca Biochar. Polish J. Environ. Stud., 28(5), 3063-3070. Doi: 10.15244/pjoes/94386.

Huang, Y., Zheng, X., Feng, S., Guo, Z., & Liang, S. (2016). Enhancement of rhodamine B removal by modifying activated carbon developed from Lythrum salicaria L. with pyruvic acid. Colloids Surfaces A Physicochem. Eng. Asp., 489, 154-162. Doi: 10.1016/j.colsurfa.2015.10.050.

Tan, I. A. W., Ahmad, A. L., & Hameed, & B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater., 154(1-3), 337-346. Doi: 10.1016/j.jhazmat.2007.10.031.

Haque, E., Jun, J. W., & Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater., 185(1), 507-511. Doi: 10.1016/j.jhazmat.2010.09.035.

Gong, J. L., Wang, B., Zeng, G. M., Yang, C. O., Niu, C. G., Niu, Q. Y., Zhou, W. J., & Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater., 164(2-3), 1517-1522. Doi: 10.1016/j.jhazmat.2008.09.072.

Zhang, W., Zhang, R. Z., Huang, Y. Q., & Yang, J. M. (2018). Effect of the synergetic interplay between the electrostatic interactions, size of the dye molecules, and adsorption sites of MIL-101(Cr) on the adsorption of organic dyes from aqueous solutions. Cryst. Growth Des., 18(12), 7533-7540. Doi: 10.1021/acs.cgd.8b01340.

Travlou, N., Kyzas, G., Lazaridis, N., & Deliyanni, E. (2013). Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir, 29(5), 1657-1668. Doi: 10.1021/la304696y.

Zhao, F., Shan, R., Li, S., Yuan, H., & Chen, Y. (2023). Characterization and Co-adsorption mechanism of magnetic clay-biochar composite for de-risking Cd(II) and methyl orange contaminated water. International Journal of Molecular Sciences, 24(6), 5755. Doi: 10.3390/ijms24065755.

Zhao, X., Shi Y., Cai, Y., & Mou, S. (2008). Cetyltrimethylammonium Bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environmental Science & Technology, 42(4), 1201-1206. Doi: 10.1021/es071817w.

Downloads

Published

04-12-2023