Interval Neutrosophic Cubic Bézier Curve Approximation Model for Complex Data


  • Siti Nur Idara Rosli Department of Mathematical Sciences, Faculty of Science, University of Technology Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
  • Mohammad Izat Emir Zulkifly Zulkifly Department of Mathematical Sciences, Faculty of Science, University of Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Interval Neutrosophic Set, Control Point, Bézier Curve, Approximation Method, Complex Data


Complex data is defined as data that has the qualities of huge data, a lack of data information, and uncertainty. This paper discussed constructing the interval neutrosophic cubic Bézier curve (INCBC) approximation model for complex data. To construct the interval neutrosophic data point (INDP) based on the definition of interval neutrosophic set (INS), interval neutrosophic relation (INR) and interval neutrosophic point (INP). Next is the introduction of an interval neutrosophic control point (INCP) that blends with the theory of interval neutrosophic set and the Bernstein basis function. Later, the interval neutrosophic cubic Bézier curve (INCBC) model is visualizing with a four-by-four control points relation approximates the curves for truth, false, and indeterminacy membership. At the end of this paper will demonstrate the algorithm for the creation of the interval neutrosophic cubic Bézier curve (INCBC). The scientific value of this work is the acceptance of complex uncertainty data. As a result, due to the fact it combines fuzzy geometric modelling, this approach has the potential to make a significant contribution to complex uncertainty modelling by using this spline which is Bézier curve model.


Ayasdi. (2018, July 28). What Exactly is Complex Data? Retrieved from

ETL-Tools. (2018, July 28). What is Complex Data? Retrieved from

Zadeh, L. A. (1965). Fuzzy set. Information and Control, 8, 338-353.

Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR’s Session, Sofia, Bulgarian.

Anile, A. M., Falcidieno, B., Gallo, G., Spagnuolo M., Spinello S. (2000). Modeling undertain data with fuzzy B-splines. Fuzzy Sets and Systems, 113(3), 397-410.

Kaleva, O. (1994). Interpolation of fuzzy data. Fuzzy Sets and Systems, 61(1), 63-70.

Wahab, A. F., Zakaria, R. and Ali, J. M. (2010). Fuzzy interpolation rational Bezier curve in imaging and visualization. 7th International Conference on Computer Graphics, Sydney, NSW, 63-67.

Wahab A. F. and Zakaria, R. (2012). Fuzzy interpolation rational cubic Bezier curves modelling of blurring offline handwriting signature with different degrees of blurring. Applied Mathematical Sciences, 6(81), 4005-4016.

Zakaria R. and Wahab, A. F. (2013). Bezier curve modelling for intuitionistic fuzzy data problem. Applied Mathematical Sciences, 7(45), 2229-2238.

Abbas, S., Hussain M. Z. and Irshad, M. (2017). Image interpolation by rational ball cubic B-spline representation and genetic algorithm. Alexandria Engineering Journal.

Bica A. M. and Popescu, C. (2017). Note on fuzzy monotonic interpolating splines of odd degree. Fuzzy Sets and Systems, 310, 60-73.

Cheng, K.-H. (2016). Adaptive B-spline-based fuzzy sliding-mode control for an auto-warehousing crane system. Applied Soft Computing, 48, 476-490.

Gaeta, M., Loia V. and Tomasiello, S. (2016). Cubic B – Spline fuzzy transforms for an efficient and secure compression in wireless sensor networks. Information Sciences, 339,19-30.

Smarandache, F. (2005). A unifying field in logics: Neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. Infinite Study.

Wang, H., Smarandache, F., Zhang, Y. and Sunderraman, R. (2005). Interval neutrosophic sets and logic: theory and applications in computing.

Tas, F. and Topal, S. (2017). Bezier Curve Modelling for Neutrosophic Data Problem. Neutrosophic Set and System. University of New Mexico.

Topal, S. and Tas, F. (2018). Bézier surface modelling for neutrosophic data problems. Neutrosophic Set and System. University of New Mexico, 19, 19-23.

Siti Nur Idara Rosli, & Mohammad Izat Emir Zulkifly., M. I. E. (2023). A Neutrosophic approach for B-spline curve by using interpolation method. Neutrosophic Systems with Applications, 9, 29-40.

Siti Nur Idara Rosli, & Mohammad Izat Emir Zulkifly. (2023). Neutrosophic Bicubic B-spline surface interpolation model for uncertainty data. Neutrosophic Systems with Applications, 10, 25-34.

Zakaria, R., Wahab, A. F. and Gobithaasan, R. U. (2013). The Representative curve of type-2 fuzzy data point modeling. Modern Applied Science, 7(5), 60-71.

Zakaria, R., Wahab, A. F. and Gobithaasan, R. U. (2013). Normal type-2 fuzzy rational B-spline Curve. Int. Journal of Math. Analysis, 7(16), 789-806.

Zakaria, R., Wahab, A. F. and Gobithaasan, R. U. (2013). Perfectly normal type-2 fuzzy interpolation B-spline curve. Applied Mathematical Sciences, 7(21-24), 1043-1055.

Yamaguchi, F. (1998). Curves and surfaces in computer aided geometric design. Springer.

Rogers, D. F. (2001). An Introduction to NURBS: With Historical Perspective. Academic Press.

Farin, F. (2002). Curves and surfaces for CAGD: A Practical Guide. 5th ed.. Academic Press.

Piegl, P. and Tiller, W. (1995).The NURBS Book. Springer-Verlag Berlin Heidelberg.

Zaidi, N. F. and Zulkifly, M. I. E. 2021. Intuitionistic fuzzy Bézier curve approximation model for uncertainty data. Proceedings of Sciences and Mathematics, Faculty of Sciences, University Technology Malaysia (UTM).

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). 3-Dimensional quartic Bézier curve approximation model by using neutrosophic approach. Neutrosophic Systems with Applications, 11, 11-21.

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). Neutrosophic bicubic bezier surface approximation model for uncertainty data. MATEMATIKA, 39(3), 281-291.

Zulkifly, M. I. E., Wahab, A. F. & Yusoff, B. (2019). Approximation of intuitionistic fuzzy Bézier curve model. Malaysian Journal of Mathematical Sciences. Special Issue: Conference on Mathematics, Informatics and Statistics (CMIS2018), 13, 97-111.