Fekete-Szegӧ Functional for Classes X_q^n (φ) and Y_q^n (φ)
DOI:
https://doi.org/10.11113/mjfas.v20n2.3228Keywords:
Analytic function, Univalent function, q-differential operator, Fekete-Szegӧ functional, SubordinationAbstract
Two new subclasses of analytic functions are proposed by applying q-differential operator which is denoted as . Throughout this study, we acquired the initial coefficients and and the upper bound for the functional of the functions in the classes and .
References
Alsoboh, A. & Darus, M. (2019). On Fekete-Szegö problem associated with q-derivative operator. Journal of Physics, 1212(012003).
Atassi, H. M. (2000). Analytic functions of a complex variable. Open University of Notre Dame.
Aouf, M. K. & Orhan, H. (2018). On the Fekete-Szegö problem for a certain class of meromorphic functions using q-derivative operator. Kyungpook Mathematical Journal, 58(2), 307-318.
Janteng, A., Liew, A. P. H. & Omar, R. (2020). Fekete-Szegö functional of classes of analytic functions involving the q-derivative operator. Applied Mathematical Sciences, 14(10), 481-488.
Janteng, A. & Halim, S.A. (2009). Coefficient estimate for a subclass of close-to-convex functions with
respect to symmetric points. International Journal of Mathematical Analysis, 3(5-8), 309–313.
Jeyaraman, M. P. & Suresh, T. K. (2014). Subordination properties of multivalent functions defined by generalized multiplier transformation. Journal of Complex Analysis, Article ID 187482.
Jackson, F. H. (1909). On q-functions and a certain difference operator. Transaction of the Royal Society of Edinburgh, 46, 253-281.
Koekoek, J. & Koekoek, R. (1993). A note on the q-derivative operator. Journal of Mathematical Analysis and Applications, 176(2): 627-634.
Kai, W. D. (2017). A Study on Univalent Functions and Their Geometrical Properties. University of Tunku Abdul Rahman. Malaysia. At: http://eprints.utar.edu.my/2577/. Acessed on: 25 September 2017.
Ma, W. & Minda, D. (1994). A Unified Treatment of Some Special Classes of Univalent Functions. Proceedings of the Conference on Complex Analysis, International Press, New York: 157-169.
Pinhong, L., Huo, T. & Wenshuai, W. (2020). Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi intergral operator. AIMS Mathematics, 6(2): 1191-1208.
Ramachandran, C., Soupramanien, T. & Frasin, B. A. (2017). New subclasses of analytic function associated with q-difference operator. European Journal of Pure and Applied Mathematics, 10(2): 348-362.
Seoudy, T. M. & Aouf, M. K. (2016). Coefficient estimates of new classes of q-starlike and q-convex funtions of complex order. Journal of Mathematical Inequalities, 10(1): 135-145.
Selvaraj, C., Karthikeyan, K. R. & Lakshmi, S. (2017). Coefficient estimates of new classes of q-starlike and q-convex functions of complex order with respect to (j,k)-symmetric points. Romanian Journal of Mathematics and Computer Science, 7(1): 29-40.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Suet Yie Tseu, Aini Janteng
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.