Band Gap Energy of Periodic Anatase TiO2 System Evaluated with the B2PLYP Double Hybrid Functional


  • Siti Hajar Alias Advanced Material for Environmental Remediation (AMER) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Fazira Ilyana Abdul Razak Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sheela Chandren Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Wai Loon Leaw Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Riadh Sahnoun Department of Chemistry, Baze University, Abuja, Nigeria
  • Hadi Nur Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Malang 65145, Indonesia



B2PLYP, band gap energy TiO2, double hybrid functional


The electronic properties of anatase titanium dioxide (TiO2) materials are of paramount importance for photocatalytic application. Ab initio calculation is performed on anatase TiO2 with various cluster sizes and shape, using Gaussian 09 program employing the standard 6-311G(d) and 3-21G basis set. Hartree-Fock (HF) theory, exchange-functional of density functional theory including hybrid (B3LYP, B3PW91, PBE1PBE and PBEh1PBE) and double-hybrid (B2PLYP), together with 2nd order Møller-Plesset perturbation theory are used to predict the band gap energy of anatase TiO2. With the inclusion of long-range HF exchange, double hybrid B2PLYP functional is able to predict band gap energy value (3.06 eV) which as compared to the experimental value (3.20 eV). Besides, this double hybrid exchange-correlation functional shows good compromise by obtaining an accurate description for cohesive energy of anatase TiO2. Thus, double-hybrid B2PLYP functional is suggested to be a practical choice for predicting the electronic properties for anatase TiO2.


Pandi, K., Preeyanghaa, M., Vinesh, V., Madhavan, J. and Neppolian, B. (2022). Complete photocatalytic degradation of tetracycline by carbon doped TiO2 supported with stable metal nitrate hydroxide. Environmental Research. 207.

Spătaru, T., Alexandru Mihai, M., Preda, L., Marcu, M., Marian, Radu, M., Dan Becherescu, N., Velea, A., Yassine Zaki, M., Udrea, R., Satulu, V. and Spătaru, N. (2022). Enhanced photoelectrochemical activity of WO3-decorated native titania films by mild laser treatment. Applied Surface Science. 596.

Tuntithavornwat, S., Saisawang, C., Ratvijitvech, T., Watthanaphanit, A., Hunsom, M. and Kannan, A. M. (2024). Recent development of black TiO2 nanoparticles for photocatalytic H2 production: An extensive review. International Journal of Hydrogen Energy. 55,1559-93.

Bellotti, V., Daldossi, C., Perilli, D., D’Arienzo, M., Stredansky, M., Di Valentin, C. and Simonutti, R. (2023). Mechanism of sustainable photocatalysis based on doped-titanium dioxide nanoparticles for UV to visible light induced PET-RAFT photo-polymerization. Journal of Catalysis. 428.

Ibrahim, N. S., Leaw, W. L., Mohamad, D., Alias, S. H. and Nur H. (2020). A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. International Journal of Hydrogen Energy. 45(53), 28553-65.

Sheikh Mohd Ghazali, S. A. I., Fatimah, I., Zamil, Z. N., Zulkifli, N. N. and Adam, N. (2023). Graphene quantum dots: A comprehensive overview. Vol. 21, Open Chemistry. De Gruyter Open Ltd.

Alias, S. H., Mohamed, N., Loon, W. and Chandren, S. (2019). Synthesis of carbon self-doped titanium dioxide and its activity in the photocatalytic oxidation of styrene under visible light irradiation. Malaysian Journal of Fundamental and Applied Sciences, 15.

Zhang, L. Y., Yang, J. J. and Han, Y. L. (2022). Novel adsorption-photocatalysis integrated bismuth tungstate modified layered mesoporous titanium dioxide (Bi2WO6/LM-TiO2) composites. Optical Materials. 130.

Palanivelu, K., Im, J. S. and Young-Seaky, L. (2007). Carbon doping of TiO2 for visible light photo catalysis-A review. Carbon Science, 8(3), 214-24.

Sano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T. and Negishi, N. (2012). Origin of visible-light activity of N-doped TiO2 photocatalyst: Behaviors of N and S atoms in a wet N-doping process. Applied Catalysis B: Environmental. 128, 77-83.

Xiao, H., Tahir-kheli, J. and Goddard, W. A. (2011). Accurate band gaps for semiconductors from density functional theory. The Journal of Physical Chemistry Letters, 2, 212-7.

Ko, K. C., Lamiel-garcía, O., Lee, J. Y. and Illas, F. (2016). Performance of a modified hybrid functional in the simultaneous description of stoichiometric and reduced TiO2 polymorphs. Physical Chemistry Chemical Physics : PCCP, 18(17), 2357-67.

Gao, H., Ding, C. and Dai, D. (2010). Density functional characterization of C-doped anatase TiO2 with different oxidation state. Journal of Molecular Structure: THEOCHEM, 944(1-3), 156-62.

Khan, M., Cao, W., Chen, N., Usman, Z., Khan, D. F., Toufiq, A. M. and Khaskheli, M. A. (2013). Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO2. Current Applied Physics, 13(7), 1376-82.

Lin, Y., Zhu, S., Jiang, Z., Hu, X., Zhang, X., Zhu, H., Fan, J., Mei, T. and Zhang, G. (2013). Electronic and optical properties of S/I-codoped anatase TiO2 from ab initio calculations. Solid State Communications. 171, 17-21.

Li, M., Zhang, J. and Zhang, Y. (2012). Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2. Catalysis Communications, 29, 175-9.

Peng L. P., Xu, L. and Xia, Z. C. (2014). Study the high photocatalytic activity of vanadium and phosphorus co-doped TiO2 from experiment and DFT calculations. Computational Materials Science. 83, 309-17.

Pan, G., Xuejun, Z., Wenfang, Z., Jing, W. and Qingju, L. (2010). First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. Journal of Semiconductors. 31(3), 032001.

Tsuneda, T. and Hirao, K. (2014). Self-interaction corrections in density functional theory. Journal of Chemical Physics, 140(18).

Bao, J. L., Gagliardi, L. and Truhlar, D. G. (2018). Self-interaction error in density functional theory: An appraisal. Journal of Physical Chemistry Letters. 9(9), 2353-8.

Mori-Sánchez, P., Cohen, A. J. and Yang, W. (2008). Localization and delocalization errors in density functional theory and implications for band-gap prediction. Physical Review Letters, 100(146401), 1-4.

Di Valentin, C. and Pacchioni, G. (2013). Trends in non-metal doping of anatase TiO2: B, C, N and F. Catalysis Today. 206, 12-8.

Labat, F., Baranek, P., Domain, C., Minot, C. and Adamo, C. (2007). Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. The Journal of Chemical Physics. 126(15), 154703.

Grimme, S. and Neese, F. (2007). Double-hybrid density functional theory for excited electronic states of molecules. Journal of Chemical Physics, 127(154116), 1-18.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R. et al. (2010). Gaussian 09, Revision C.01.

Atanelov, J., Gruber, C. and Mohn, P. (2015). The electronic and magnetic structure of p-element (C,N) doped rutile-TiO2; a hybrid DFT study. Computational Materials Science, 98, 42-50.

Gijs Schaftenaar. (2018). Molden.

Roothan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23(2), 69-89.

Becke, A. D. (1993). Density-functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648-52.

Lee, C., Yang, W. and Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-9.

Miehlich, B., Savin, A., Stoll, H. and Preuss, H. (1989). Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 157(3), 200-6.

Perdew, J. P., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the GGA for exchange and correlation. Physical Review B, 46(11), 6671.

Shi, J. M., Peeters, F. M., Hai, G. Q. and Devreese, J. T. (1991). Donor transition energy in GaAs superlattices in a magnetic field along the growth axis. Physical Review B, 44(11), 5692-702.

Perdew, J., Burke, K. and Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B, 54(23), 16533-9.

Perdew, J. P., Burke, K. and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-8.

Perdew, J. P., Burke, K. and Ernzerhof, M. (1997). Errata: Generalized gradient approximation made simple. Physical Review Letters, 78(7), 1396.

Adamo, C. and Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-70.

Ernzerhof, M. and Perdew, J. P. (1998). Generalized gradient approximation to the angle- and system-averaged exchange hole. Journal of Chemical Physics, 109(9), 3313-20.

Schwabe, T. and Grimme, S. (2007). Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Physical Chemistry Chemical Physics : PCCP, 9(26), 3397-406.

Frisch, M. J., Head-Gordon, M. and People, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166(3), 281-9.

Head-Gordon, M., People, J. A. and Frisch, M. J. (1988). MP2 energy evaluation by direct methods. Chemical Physics Letters, 153(6), 503-6.

Sæbø, S. and Almlöf, J. (1989). Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chemical Physics Letters, 154(1), 83-9.

Head-Gordon, M. and Head-Gordon, T. (1994). Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chemical Physics Letters, 220(1-2), 122-8.

Parra, R. D. and Farrell, H. H. (2009). Binding energy of metal oxide nanoparticles. The Journal of Physical Chemistry C, 113(12), 4786-91.

Zhu, H. X. and Liu, J.-M. (2014). Electronic and optical properties of C and Nb co-doped anatase TiO2. Computational Materials Science, 85, 164-71.

Xi, X., Dong, P., Pei, H., Hou, G., Zhang, Q., Guan, R., Xu, N. and Wang, Y. (2014). Density functional study of X monodoped and codoped (X = C, N, S, F) anatase TiO2. Computational Materials Science, 93, 1-5.

Zheng, X., Cohen, A. J., Mori-Sánchez, P., Hu, X. and Yang, W. (2011). Improving band gap prediction in density functional theory from molecules to solids. Physical Review Letters, 107(2), 1-4.

Hua Gui, Y., Cheng Hua, S., Shi Zhang, Q., Jin, Z., Gang, L., Sean Campbell, S., Hui Ming, C. and Gao Qing, L. (2008). Supplementary Information,Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-41.

Erdin, S., Lin, Y., Halley, J. W., Zapol, P., Redfern, P. and Curtiss, L. (2007). Self-consistent tight binding molecular dynamics study of TiO2 nanoclusters in water. Journal of Electroanalytical Chemistry, 607(1-2), 147-57.

Lazzeri, M., Vittadini, A. and Selloni, A. (2001). Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B. 63(155409), 1-9.

Xu, B., Guo, X. and Tian, Y. (2009). Universal quantification of chemical bond strength and its application to low dimensional materials. In: WwwIntechopenCom.

Kumar, N., Hazarika, S. N., Limbu, S., Boruah, R., Deb, P., Namsa, N. D. and Das, S. K. (2015). Hydrothermal synthesis of anatase titanium dioxide mesoporous microspheres and their antimicrobial activity. Microporous and Mesoporous Materials, 213, 181-7.