Superior Performances of Q-Switched and Mode-Locked Erbium-doped Fiber Laser using Black Titanium Dioxide Thin-film Saturable Absorbers

Authors

  • A. R. Johari ᵃLaser Center, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 310 UTM Johor Bahru, Johor, Malaysia
  • H. Bakhtiar ᵃLaser Center, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 310 UTM Johor Bahru, Johor, Malaysia
  • S. Daud ᵃLaser Center, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 310 UTM Johor Bahru, Johor, Malaysia
  • G. Krishnan ᵃLaser Center, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n1.3196

Keywords:

Saturable absorber, fiber laser, black titanium dioxide, q-switch, mode-locked

Abstract

This work reports on the improved Q-switched and mode-locked performances of black titanium dioxide (BTiO2-x) nanoparticles embedded in thin-film composite material as a saturable absorber compared to TiO2 in an erbium-doped fiber laser. The thin-film saturable absorbers were prepared by mixing the nanoparticles with polyvinyl alcohol (PVA) as a host. BTiO2-x has a better nonlinear absorption coefficient, β of -12.46 x 10-7 m/W compared to -7.15x 10-7 m/W for TIO2 determined using z-scan measurement. The laser performance was evaluated in the 85.21 mW – 126.48 mW pump power range. Upon inserting TiO2 and BTiO2-x SA in a laser cavity, the peaks of the output spectrum shifted from 1566.62 nm to 1563.24 nm and 1565.75 nm, respectively. Regarding Q-switched performances, BTiO2-x SA generates a shorter pulse width of 16.00 µs than TiO2 SA. The slope efficiency of the TiO2 SA was 11.72 %, which is higher than the slope efficiency of the BTiO2-x SA. The maximum average and peak power generated by the BTiO2-x SA were 55.67 % and 54.83 % higher than the TiO2 SA. As for mode-locked outputs, BTiO2-x SA can generate pulsed laser at a low threshold power of 62.29 mW compared to TiO2 SA. Furthermore, BTiO2-x SA produced a shorter pulse width of 5.04 ps, whereas TiO2 is 9.20 ps. This study demonstrates that BTiO2-x SA has the potential to produce ultrashort pulse width using the mode-locked technique.

References

R. Mary, D. Choudhury, and A. K. Kar. (2014). Applications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum Electron., 20(5), 72-84. Doi: 10.1109/JSTQE.2014.2301136.

S. A. Sadeq, S. W. Harun, and A. H. Al-Janabi. (2018). Ultrashort pulse generation with an erbium-doped fiber laser ring cavity based on a copper oxide saturable absorber. Appl. Opt., 57(18), 5180. Doi: 10.1364/ao.57.005180.

H. Guo et al. (2016). Q-switched erbium-doped fiber laser based on silver nanoparticles as a saturable absorber. IEEE Photonics Technol. Lett., 28(2), 135-138. Doi: 10.1109/LPT.2015.2487521.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. Raymond Ooi, and S. W. Harun. (2017). Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser. Laser Phys., 27(6). Doi: 10.1088/1555-6611/aa6bd7.

N. A. Aziz, A. A. Latiff, M. Q. Lokman, E. Hanafi, and S. W. Harun. (2017). Zinc oxide-based Q-switched erbium-doped fiber laser. Chinese Phys. Lett., 34(4), 2-5. Doi: 10.1088/0256-307X/34/4/044202.

M. A. A. B. Sahib, N. F. Zulkipli, A. H. A. Rosol, M. Yasin, and S. W. Harun. (2021). Titanium carbide MXene for generating Q-switched pulses in erbium-doped fiber laser cavity. Microw. Opt. Technol. Lett., 63(11), 2893-2897. Ddoi: 10.1002/mop.32952.

M. Wang, C. Chen, C. Huang, and H. Chen. (2014). Passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror. Optik (Stuttg)., 125(90), 2154-2156. Doi: 10.1016/j.ijleo.2013.10.047.

P. H. Reddy et al. (2018). Titanium dioxide doped fiber as a new saturable absorber for generating mode-locked erbium doped fiber laser. Optik (Stuttg)., 158, 1327-1333. Doi: 10.1016/j.ijleo.2018.01.032.

Q. Bao et al. (2009). Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Adv. Funct. Mater., 19(19), 3077-3083. Doi: 10.1002/adfm.200901007.

Z. Luo et al. (2010). Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett., 35(21), 3709. Doi: 10.1364/ol.35.003709.

D. Li et al. (2015). Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation. Sci. Rep., 5(Augst), 1-9. Doi: 10.1038/srep15899.

Q. Hu et al. (2019). Wavelength-dependent nonlinear absorption and ultrafast dynamics process of WS 2. Opt. Express,. 9(4), 1-9. Doi: 10.1364/osac.2.002755.

X. Jin et al. (2017). Wideband tunable ultrafast fiber laser using blackphosphorus saturable absorber. 2017 Opto-Electronics Commun. Conf. OECC 2017 Photonics Glob. Conf. PGC 2017, 2017-Novem, 1-3. Doi: 10.1109/OECC.2017.8114937.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun. (2017). A generation of 2 μm Q-switched thulium-doped fibre laser based on anatase titanium(IV) oxide film saturable absorber. J. Mod. Opt., 64(2), 187-190, , doi: 10.1080/09500340.2016.1220641.

H. Ahmad et al. (2016). Band Q-switched fiber laser using titanium dioxide (TiO2) as saturable absorber. IEEE Photonics J., 8(1). Doi: 10.1109/JPHOT.2015.2506169.

Z. I. Rizman, B. A. Ahmad, M. F. M. Rusdi, Z. Jusoh, S. W. Harun, and M. Yasin. (2020). Tunable Q-switched erbium-doped fiber laser with titanium nanoparticles deposited onto PVA film as saturable absorber. Nonlinear Opt. Quantum Opt., 52(3-4), 167-175.

N. Mohd Yusoff et al. (2020). Low threshold Q-switched fiber laser incorporating titanium dioxide saturable absorber from waste material. Optik (Stuttg., 18(May). Doi: 10.1016/j.ijleo.2020.164998.

N. Ahmed, N. H. Kamarulzaman, N. F. Zulkipli, Z. Jusoh, H. A. Rahman, and S. W. Harun. (2020). Generation of Q-switched Erbium-doped fiber laser using titanium dioxide film based saturable absorber. IOP Conf. Ser. Mater. Sci. Eng., 854(1). Doi: 10.1088/1757-899X/854/1/012018.

J. Li et al. (2020). A facile method for the preparation of black TiO2 by Al reduction of TiO2 and their visible light photocatalytic activity. RSC Adv., 10(57), 34775–34780. Doi: 10.1039/d0ra06784a.

L. Andronic and A. Enesca. (2020). Black TiO2 synthesis by chemical reduction methods for photocatalysis applications. Front. Chem., 8(November), 1-8. Doi: 10.3389/fchem.2020.565489.

R. F. Zhang, D. Z. Guo, and G. M. Zhang. (2017). Strong saturable absorption of black titanium oxide nanoparticle films. Appl. Surf. Sci., 426, 763-769. Doi: 10.1016/j.apsusc.2017.07.222.

S. Cravanzola, F. Cesano, F. Gaziano, and D. Scarano. (2017). Sulfur-doped TiO2: Structure and surface properties. Catalysts, 7(7). Doi: 10.3390/catal7070214.

L. S. Chougala, M. S. Yatnatti, R. K. Linganagoudar, R. R. Kamble, and J. S. Kadadevarmath. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Nano- Electron. Phys., 9(4), 2-7. Doi: 10.21272/jnep.9(4).04005.

H. Tan et al. (2014). A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 6(17), 10216-10223. Doi: 10.1039/c4nr02677b.

M. Abdullah, H. Bakhtiar, S. Islam, M. S. A. Aziz, and G. Krishnan. (2019). Third-order nonlinearity and optical limiting properties of sol–gel-based bromophenol blue dye immobilized in silica–titania nanohybrid. J. Sol-Gel Sci. Technol., 89(2), 361-369. Doi: 10.1007/s10971-018-4906-5.

H. Xia et al. (2014). Nanosecond pulse generation in a graphene mode-locked erbium-doped fiber laser. Opt. Commun., 330, 147-150. Doi: 10.1016/j.optcom.2014.05.048.

Shanghai jiao tong da xue. and Shanghai guang xue jing mi ji xie yan jiu suo. (2009). CLEO/Pacific Rim 2009 : the 8th Pacific Rim Conference on Lasers and Electro-Optics : Aug. 30-Sept. 3, 2009, Shanghai, China. IEEE,. Accessed: Jan. 09, 2023. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=CLEOPR-2009-TUP3_11.

D. Mao et al. (2015). WS_2 saturable absorber for dissipative soliton mode locking at 106 and 155 µm. Opt. Express, 23(21), 27509. Doi: 10.1364/oe.23.027509.

I. A. M. Alani et al. (2019). Nanosecond mode-locked erbium doped fiber laser based on zinc oxide thin film saturable absorber. Indian J. Phys., 93(1), 93-99. Doi: 10.1007/s12648-018-1251-z.

A. A. A. Jafry et al. (2020). MAX phase based saturable absorber for mode-locked erbium-doped fiber laser. Opt. Laser Technol., 127(November), 1-8. Doi: 10.1016/j.optlastec.2020.106186.

S. W. H. A. H. A. Rosol, A. A. Aminuddin Jafry, B. Nizamani, N. F. Zulkipli, M. I. M. A. Khudus, M. Yasin. (2021). MXene Ti3C2Tx thin film as a saturable absorber for passively mode-locked and Q-switched fibre laser. J. Mod. Opt., 68(18), 984-993. [Online]. Available: https://doi.org/10.1080/09500340.2021.1967494.

Downloads

Published

08-02-2024