The Efficacy of Nile Tilapia Vaccination by Formalin killed Streptococcus agalactiae Encapsulated in Alginate Microcapsules


  • Moayad M Abu Darwish Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohd Zul Helmi Rozaini Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Hassan I. Sheikh Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Laith A Abdul Razzak Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia



Streptococcus agalactiae, alginate, microcapsule, Nile tilapia, vaccine, aquaculture


Nile tilapia is one of the major farmed fish that is often infected with Streptococcus. Oral vaccination is the most preferable technique, but the antigen is usually degraded by gastric juice. Encapsulation by alginate could be effective in protecting the antigen. The aim of this study was to assess the effectiveness of vaccinating Nile tilapia using formalin-killed Streptococcus agalactiae encapsulated in alginate. The average diameter of fabricated microcapsules was 500±20 μm, with 86% encapsulation efficacy. Fish were then divided into four groups (30 fish per group): group A: fish vaccinated by alginate microcapsules covered by formalin-killed cells (FKC), group B: fish vaccinated by non-covered FKC, group C: fish fed with empty alginate microcapsules and group D: fish feed with commercial pellets as control group. All groups were treated for 14 days and then fed with commercial pellets. Blood samples were collected on days 7, 14, 21, and 28 days post-vaccination. Bactericidal activity, lysozyme activity and serum antibody titer were significantly elevated in group A (p<0.001) compared to other treated groups. Then, gene expression analysis was performed at 29 days post-vaccination to evaluate the expression of main immune contributors such IgM, IgT, TCR β, CD4, CD8α, IL 1β, IL 8, IFN 1, and TNFα. The analysis showed significant upregulation of all tested genes in group A compared to other treated groups (p<0.001). Lastly, a challenge test was done on day 30 post-vaccination by injecting 4.6×106 CFU mL−1 of virulent S. agalactiae. The relative percent of survival (RPS) were 92± 2%, 48± 5% and 4± 3% for groups A, B and C respectively. The obtained result indicated that alginate encapsulation provided antigen protection due to its higher immunogenicity compared to non-covered vaccine. Hence, the fabricated vaccine could be incorporated with food and orally administered to Nile tilapia to prevent S. agalactiae infection.


Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunology, 90, 210-214.‏

Ahmadivand, S., Soltani, M., Behdani, M., Evensen, Ø., Alirahimi, E., Hassanzadeh, R., & Soltani, E. (2017). Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout. Developmental & Comparative Immunology, 74, 178-189.‏

Agüero, L., Zaldivar, D., Pe˜na, L., Solís, Y., Ramón, J. A., & Dias, M. L. (2015). Preparation and characterization of pH-sensitive microparticles based on polyelectrolyte complexes for antibiotic delivery. Polymer Engineering Science, 55, 981-987.

Agüero, L., Zaldivar-Silva, D., Peña, L., & Dias, M. L. (2017). Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers, 168, 32-43.

Alishahi, M., Esmaeili Rad, A., Zarei, M., & Ghorbanpour, M. (2014). Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio. Iran. J. Vet. Med, 8(2), 125-133.

Alvarez-Lorenzo, C., Blanco-Fernandez, B., Puga, A. M., & Concheiro, A. (2013). Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced Drug Delivery Reviews, 65, 1148-1171.

Amend, D. F. (1981). Potency testing of fish vaccines. Dev. Biol. Stand., 49, 447-454.

Anderson, D. P., & Zeeman, M. G. (2020). Immunotoxicology in fish. Fundamentals of aquatic toxicology. CRC Press.‏ 371-404.

Ángeles Esteban, M. (2012). An overview of the immunological defenses in fish skin. International scholarly research notices, 2012.‏

Ba˜nos, F. G. D., Pe˜na, A. I. D., Cifre, J. G. H., Martínez, M. C. L., Ortega, A., & de la Torre, J. G. (2014). Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydrate Polymers, 102, 223-230.

Behera, T., Nanda, P. K., Mohanty, C., Mohapatra, D., Swain, P., Das, B. K., ... & Sahoo, S. K. (2010). Parenteral immunization of fish, Labeo rohita with Poly D, L-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish & Shellfish Immunology, 28(2), 320-325.

Bennacef, C., Desobry-Banon, S., Probst, L., & Desobry, S. (2021). Advances on alginate use for spherification to encapsulate biomolecules. Food hydrocolloids, 118, 106782.‏

Bianchi, M., Chopin, F., Farme, T., Franz, N., Fuentevilla, C., Garibaldi, L., & Laurenti, A. (2014). FAO: the state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations: Rome, Italy, 1-230.

Bose, R. J., Kim, M., Chang, J. H., Paulmurugan, R., Moon, J. J., Koh, W. G., ... & Park, H. (2019). Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 77, 12-24.‏

Budiño, B., Cal, R. M., Piazzon, M. C., & Lamas, J. (2006). The activity of several components of the innate immune system in diploid and triploid turbot. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145(1), 108-113.

Cabello, F. C., Godfrey, H. P., Buschmann, A. H., and Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis., 16(7), e127-33

Caetano, L. A., Almeida, A. J., & Gonc¸ alves, L. (2016). Effect of experimental parameters on alginate/chitosan microparticle for BCG encapsulation. Marine Drugs, 14, 90.

Cao, J., Xu, H., Yu, Y., & Xu, Z. (2023). Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. Developmental & Comparative Immunology, 104621.

Cardoso, M. J., Costa, R. R., & Mano, J. F. (2016). Marine origin polysaccharides in drug delivery systems. Marine Drugs, 14, 34.

Castro, R., Bernard, D., Lefranc, M. P., Six, A., Benmansour, A., & Boudinot, P. (2011). T cell diversity and TcR repertoires in teleost fish. Fish & shellfish immunology, 31(5), 644-654.‏

Cooper, E. L. (Ed.). (2018). Advances in comparative immunology. Springer.‏

Dadar, M., Dhama, K., Vakharia, V. N., Hoseinifar, S. H., Karthik, K., Tiwari, R., . . . Joshi, S. K. (2017). Advances in aquaculture vaccines against fish pathogens: global status and current trends. Reviews in Fisheries Science & Aquaculture, 25(3), 184-217.

Das, P. K., & Salinas, I. (2020). Fish nasal immunity: From mucosal vaccines to neuroimmunology. Fish & Shellfish Immunology, 104, 165-171.

Delphino, M. K., Barone, R. S., Leal, C. A., Figueiredo, H. C., Gardner, I. A., & Gonçalves, V. S. (2019). Economic appraisal of vaccination against Streptoccocus agalactiae in Nile tilapia farms in Brazil. Preventive Veterinary Medicine, 162, 131-135.‏

Dezfuly, Z. T., Alishahi, M., Ghorbanpoor, M., Tabandeh, M. R., & Mesbah, M. (2020). Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout (Oncorhyncus mykiss). Fish & Shellfish Immunology, 104, 25-35.

Dhamecha, D., Movsas, R., Sano, U., & Menon, J. U. (2019). Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. International Journal of Pharmaceutics, 569, 118627.‏

Dickerson, H. W., & Findly, R. C. (2017). Vertebrate Adaptive immunity—Comparative insights from a Teleost Model. Frontiers in Immunology, 8, 1379.‏

Esteban, M., Cuesta, A., Ortuno, J., & Meseguer, J. (2001). Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish & Shellfish Immunology, 11(4), 303-315.

FAO. (2022). The state of world fisheries and aquaculture 2022. Towards blue transformation. Rome, FAO.

Firdaus‐Nawi, M., Yusoff, S. M., Yusof, H., Abdullah, S. Z., & Zamri‐Saad, M. (2013). Efficacy of feed‐based adjuvant vaccine against S treptococcus agalactiae in O reochromis spp. in M alaysia. Aquaculture Research, 45(1), 87-96

Fletcher, T. C., & Secombes, C. J. (2015). Immunology of fish. eLS, 1-9.‏

Flores-Kossack, C., Montero, R., Köllner, B., & Maisey, K. (2020). Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish & Shellfish Immunology, 98, 52-67.‏

‏Freudenberger Catanzaro, K. C., Lahmers, K. K., Allen, I. C., & Inzana, T. J. (2022). Alginate microencapsulation of an attenuated O-antigen mutant of Francisella tularensis LVS as a model for a vaccine delivery vehicle. Plos One, 17(3), e0259807.‏

Funge‐Smith, S., & Bennett, A. (2019). A fresh look at inland fisheries and their role in food security and livelihoods. Fish and Fisheries, 20(6), 1176-1195.‏

Gallage, S., Katagiri, T., Endo, M., & Maita, M. (2017). Comprehensive evaluation of immunomodulation by moderate hypoxia in S. agalactiae vaccinated Nile tilapia. Fish & Shellfish Immunology, 66, 445-454.‏

Gallegos, A. M., Xiong, H., Leiner, I. M., Sušac, B., Glickman, M. S., Pamer, E. G., & Van Heijst, J. W. (2016). Control of T cell antigen reactivity via programmed TCR downregulation. Nature Immunology, 17(4), 379-386.‏

García-Moreno, D., Tyrkalska, S. D., Valera-Pérez, A., Gómez-Abenza, E., Pérez-Oliva, A. B., & Mulero, V. (2019). The zebrafish: a research model to understand the evolution of vertebrate immunity. Fish & Shellfish Immunology, 90, 215-222.‏

Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739.‏

Govintharaj, Y., Chandrasekar, J., Jesu, A., & Ramasamy, H. (2015). Poly D, L-lactide-co-glycolic acid (PLGA)-encapsulated CpG-oligonucleotide (ODN) on immune response in Cyprinus carpio against Aeromonas hydrophila. Journal of Aquaculture Research and Development, 6(4).

Grayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J. W., Xie, J., & Belosevic, M. (2018). Mechanisms of fish macrophage antimicrobial immunity. Frontiers in immunology, 9, 1105.

Gusev, E. Y., Zhuravleva, Y. A., & Zotova, N. V. (2019). Correlation of the Evolution of Immunity and Inflammation in Vertebrates. Biology Bulletin Reviews, 9, 358-372.‏

Halimi, M., Alishahi, M., Abbaspour, M. R., Ghorbanpoor, M., & Tabandeh, M. R. (2019). Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 90, 431-439.‏

İspir, Ü., Türk, C., Kırıcı, M., Taysı, M. R., & Özcan, M. (2016). Immunization of rainbow trout (Oncorhynchus mykiss) with alginate microparticles containing inactivated Flavobacterium psychrophilum. Journal of Fisheries and Aquatic Sciences (Su Ürünleri Dergisi), 33(3), 233-240.‏

Ji, Q., Wang, S., Ma, J., & Liu, Q. (2020). A review: Pin the development of fish Vibrio spp. vaccines. Immunology Letters, 226, 46-54.‏

Jia, S., Zhou, K., Pan, R., Wei, J., Liu, Z., & Xu, Y. (2020). Oral immunization of carps with chitosan–alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection. Fish & Shellfish Immunology, 105, 327-329.‏

Joosten, P., Tiemersma, E., Threels, A., Caumartin-Dhieux, C., & Rombout, J. (1997). Oral vaccination of fish againstVibrio anguillarumusing alginate microparticles. Fish & Shellfish Immunology, 7(7), 471-485.

Kayansamruaj, P., Areechon, N., & Unajak, S. (2020). Development of fish vaccine in Southeast Asia: A challenge for the sustainability of SE Asia aquaculture. Fish & Shellfish Immunology, 103, 73-87.‏

Kubilay, A., Ekici, S., Didinen, B. I., & Diler, Ö. (2010). Oral vaccination against lactococcosis in rainbow trout (oncorhynchus mykiss) using sodium alginate and poly (lactide-co-glycolide) carriera.

Lancefield, R. C. (1938). Two serological types of group B hemolytic streptococci with related, but not identical, type-specific substances. The Journal of Experimental Medicine, 67(1), 25.

Larsen, B. E., Bjømstad, J., Pettersen, E. O., Tønnesen, H. H., & Melvik, J. E. (2015). Rheological characterization of an injectable alginate gel system. BMC Biotechnology, 15, 1-12.

Leal, C. A., Queiroz, G. A., Pereira, F. L., Tavares, G. C., & Figueiredo, H. C. (2019). Streptococcus agalactiae sequence type 283 in farmed fish, Brazil. Emerging Infectious Diseases, 25(4), 776.‏

Liu, G., Zhu, J., Chen, K., Gao, T., Yao, H., Liu, Y., ... & Lu, C. (2016). Development of Streptococcus agalactiae vaccines for tilapia. Diseases of Aquatic Organisms, 122(2), 163-170.‏

Løkka, G., Falk, K., Austbø, L., & Koppang, E. O. (2014). Uptake of yeast cells in the Atlantic salmon (Salmo salar L.) intestine. Developmental & Comparative Immunology, 47(1), 77-80.‏

Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11), 569.

Mao, Z., He, C., Qiu, Y., & Chen, J. (2011). Expression of Vibrio harveyi ompK in the yeast Pichia pastoris: The first step in developing an oral vaccine against vibriosis? Aquaculture, 318(3-4), 268-272.‏

Montero Meza, R. T. (2022). Considerations and new tools for improving fish vaccination. Doctoral dissertation.‏

Mondal, H., & Thomas, J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquaculture International, 30(4), 1971-2000.‏

Munang’andu, H. M., Paul, J., & Evensen, Ø. (2016). An overview of vaccination strategies and antigen delivery systems for Streptococcus agalactiae vaccines in Nile tilapia (Oreochromis niloticus). Vaccines, 4(4), 48.‏

Naylor, R., Fang, S., & Fanzo, J. (2023). A global view of aquaculture policy. Food Policy, 116, 102422.

Novoa, B., & Pereiro, P. (2022). Editorial of special issue the 2nd edition: Vaccines for aquaculture. Vaccines, 10(8), 1242.

Okamura, Y., Kono, T., Sakai, M., & Hikima, J. I. (2022). Evolutional perspective and functional characteristics of interleukin-17 in teleosts. Fish & Shellfish Immunology, 108496.

Paulsen, S. M., Lunde, H., Engstad, R. E., & Robertsen, B. (2003). In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish & Shellfish Immunology, 14(1), 39-54.

Peinado, I., Lesmes, U., Andrés, A., & McClements, J. D. (2010). Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir, 26(12), 9827-9834.

Petit, J., Embregts, C. W., Forlenza, M., & Wiegertjes, G. F. (2019). Evidence of trained immunity in a fish: conserved features in carp macrophages. The Journal of Immunology, 203(1), 216-224.‏

Pradeep, P. J., Suebsing, R., Sirthammajak, S., Kampeera, J., Jitrakorn, S., Saksmerprome, V., ... & Withyachumanarnkul, B. (2016). Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquaculture Reports, 3, 58-66.‏

Pradeu, T., & Du Pasquier, L. (2018). Immunological memory: What's in a name? Immunological Reviews, 283(1), 7-20.‏

Ramos-Espinoza, F. C., Cueva-Quiroz, V. A., Yunis-Aguinaga, J., & de Moraes, J. R. E. (2020). A comparison of novel inactivation methods for production of a vaccine against Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Aquaculture, 528, 735484.‏

Rocha, C. P., Cabral, H. N., Marques, J. C., & Gonçalves, A. M. (2022). A global overview of aquaculture food production with a focus on the activity’s development in transitional systems—The case study of a South European Country (Portugal). Journal of Marine Science and Engineering, 10(3), 417.‏

Rodrigues, A. P., Hirsch, D., Figueiredo, H. C. P., Logato, P. V. R., & Moraes, A. M. (2006). Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochemistry, 41(3), 638-643.‏

Romalde, J. L., Luzardo-Alvárez, A., Ravelo, C., Toranzo, A. E., & Blanco-Méndez, J. (2004). Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture, 236(1-4), 119-129.‏

Rombout, J. H., Yang, G., & Kiron, V. (2014). Adaptive immune responses at mucosal surfaces of teleost fish. Fish & Shellfish Immunology, 40(2), 634-643.

Scapigliati, G., Fausto, A. M., & Picchietti, S. (2018). Fish lymphocytes: an evolutionary equivalent of mammalian innate-like lymphocytes? Frontiers in Immunology, 9, 971.‏

Secombes, C. J., & Ellis, A. E. (2012). The Immunology of Teleosts. Fish Pathology: Fourth Edition (pp. 144-166). Wiley-Blackwell.

Shelby, R. A., Shoemaker, C. A., & Klesius, P. H. (2004). Development of an ELISA to measure the humoral immune response of hybrid striped bass Morone chrysops× M. saxatilis to Streptococcus iniae. Aquaculture Research, 35(10), 997-1001.

Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34-60.‏

Simó, G., Fernández‐Fernández, E., Vila‐Crespo, J., Ruipérez, V., & Rodríguez‐Nogales, J. M. (2017). Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydrate Polymers, 170, 1-14.‏

Somamoto, T., & Nakanishi, T. (2020). Mucosal delivery of fish vaccines: Local and systemic immunity following mucosal immunisations. Fish & Shellfish Immunology, 99, 199-207.‏

Srivastava P. K and Pandey A. K. (2015). Role of immunostimulants in immune responses of fish and shellfish. Biochem. Cell. Arch., 15(1), 47-73.

Wang, T., Hu, Y., Wangkahart, E., Liu, F., Wang, A., Zahran, E., ... & Secombes, C. J. (2018). Interleukin (IL)-2 is a key regulator of T helper 1 and T helper 2 cytokine expression in fish: functional characterization of two divergent IL2 paralogs in salmonids. Frontiers in Immunology, 9, 1683.‏

Wang, Q., Ji, W., & Xu, Z. (2020). Current use and development of fish vaccines in China. Fish & Shellfish Immunology, 96, 223-234.‏

Wang, X., Zhang, A., Qiu, X., Yang, K., & Zhou, H. (2023). The IL-12 family cytokines in fish: Molecular structure, expression profile and function. Developmental & Comparative Immunology, 104643.

Wangkahart E, Scott C, Secombes CJ, Wang T (2016) Re-examination of the rainbow trout (Oncorhynchus mykiss) immune response to flagellin: Yersinia ruckeri flagellin is a potent activator of acute phase proteins, anti-microbial peptides and pro-inflammatory cytokines in vitro. Dev Comp Immunol., 57, 75-87

Xia, H., Lu, J., Yang, P., Chen, F., Zhang, Y., Liu, L., ... & Huang, R. (2023). Research Progress in molecular biology of fish immunoglobulin M (IgM). Israeli Journal of Aquaculture-Bamidgeh,7 5, 1-7.

Yanong, R. P., and Erlacher-Reid, C. (2012). Biosecurity in aquaculture, Part 1: An overview. USDA Southern Regional Aquaculture Center, 25-59

Yu, Y., Wang, Q., Huang, Z., Ding, L., & Xu, Z. (2020). Immunoglobulins, mucosal immunity and vaccination in teleost fish. Frontiers in Immunology, 11, 567941.‏

Zhang, Y., & Su, J. (2023). Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. Developmental & Comparative Immunology, 104645.

Zhu, L. Y., Nie, L., Zhu, G., Xiang, L. X., & Shao, J. Z. (2013). Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Developmental & Comparative Immunology, 39(1-2), 39-62.