Leptospirosis Relative Risk Estimates based on Continuous-Time, Discrete-Space Stochastic SIR-L-SI Transmission Model

Authors

  • Sufi Hafawati Ideris School of Mathematical Science, College of Computing, Informatics and Media Univerisiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Norshahida Shaadan School of Mathematical Science, College of Computing, Informatics and Media Univerisiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Syazreen Niza Shair School of Mathematical Science, College of Computing, Informatics and Media Univerisiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nor Azah Samat Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n1.3182

Keywords:

Leptospirosis, SIR-L-SI model, asymptotic, numerical, relative risk

Abstract

Leptospirosis is a re-emerging global disease that has become endemic in Malaysia. The transmissions usually occur between animals especially rats to rats and rats to humans. Since, it is an easily contractable disease that can be transmitted directly through contact with infected rat’s urine or indirectly from the environment such as via water and soil, it is very challenging to curb this disease from infecting humans. Poor understanding of the disease and lack of epidemiological data also made leptospirosis is difficult to control. To cope with this problem, a leptospirosis disease transmission model is developed to study the mechanism of leptospirosis disease spread over continuous-time that may help to predict future caused of an outbreak. This study aims to construct a continuous-time and discrete-space stochastic SIR-L-SI (Susceptible, Infected, Recovered Humans-Leptospires in the Environment-Susceptible, Infectious Rats) of leptospirosis disease transmission to estimate the risk involved. A simple method of asymptotic and numerical analyses is applied as an alternative approach for solving simultaneous differential equations in the leptospirosis SIR-L-SI transmission model. The application of the proposed model is demonstrated using leptospirosis data for Malaysia. The results of asymptotic behaviour and numerical analysis provide useful information about susceptible and infective rat and human populations as well as offer relative risk estimates that can be used as one of the control measures in identifying hot-spot areas for this disease.

References

Al-orry, W., Arahou, M., Hassikou, R., Quasmaoui, A., Charof, R., & Mennane, Z. (2016). Leptospirosis: Transmission, diagnosis and prevention. International Journal of Innovation and Applied Studies, 15, 457-467.

Auerbach, J. (2014). Does New York City really have as many rats as people? Significance, 11(4), 22–27. https://doi.org/10.1111/j.1740-9713.2014.00764.x.

Baca-Carrasco, D., Olmos, D., & Barradas, I. (2015). A mathematical model for human and animal Leptospirosis. Journal of Biological Systems, 23(supp01). https://doi.org/10.1142/s0218339015400057.

Bahaman, A. R. (2017). Rats and leptospirosis, a unique tropical experience. Veterinary Research Communications, 29(1), 26-27

Barragan, V., Nieto, N., Keim, P., & Pearson, T. (2017). Meta-analysis to estimate the load of Leptospira excreted in urine: Beyond rats as important sources of transmission in low-income rural communities. BMC Research Notes, 10(1). https://doi.org/10.1186/s13104-017-2384-4.

Begon, M., Bennett, M., Bowers, R. G., French, N. P., Hazel, S. M., & Turner, J. (2002). A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiology and infection, 129(1), 147-153. https://doi.org/10.1017/s0950268802007148.

Benacer. D., Thong, K. L., Khebir. V., Galloway, R. L., Hartskeerl, R. A., Lewis, J. W., & Mohd Zain, S. N. (2016). Human leptospirosis in Malaysia: Reviewing the challenges. Asia Pacific Journal of Public Health, 28(4), 290-302.

Besag, J., York, J., & Molli, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43(1), 1-20.

Brauer, F. (2012). Deterministic compartmental disease transmission models. Lecture. Retrieved April 3, 2016 from http://www.mathualberta.ca/~irl?summer_school/2012/ lecturernotes/det_models.pdf.

Campi, K. L., & Krubitzer, L. (2010). Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number. The Journal of Comparative Neurology, 518(22), 4491-4512. Doi: https://doi.org/10.1002/cne.22466.

Casanovas-Massana, A., Costa, F., Riediger, I. N., Cunha, M., de Oliveira, D., Mota, D. C., Sousa, E., Querino, V. A., Nery, N., Reis, M. G., Wunder, E. A., Diggle, P. J., & Ko, A. I. (2018). Spatial and temporal dynamics of pathogenic Leptospira in surface waters from the urban slum environment. Water Research, 130, 176-184. https://doi.org/10.1016/j.watres.2017.11.068.

Cordonin, C., Turpin, M., Bringart, M., Bascands, J.-L., Flores, O., Dellagi, K., Mavingui, P., Roche, M., & Tortosa, P. (2020). Pathogenic leptospira and their animal reservoirs: Testing host specificity through experimental infection. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64172-4.

Costa, F., Wunder, E. A., De Oliveira, D., Bisht, V., Rodrigues, G., Reis, M. G., Ko, A. I., Begon, M., & Childs, J. E. (2015). Patterns in Leptospira shedding in Norway rats (rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLOS Neglected Tropical Diseases, 9(6). https://doi.org/10.1371/journal.pntd.0003819.

Daud, A., Mohd Fuzi, N. M., Wan Mohammad, W. M., Amran, F., Ismail, N., Mokhtar Arshad, M., & Kamarudin, S. (2018). Leptospirosis and workplace environmental risk factors among cattle farmers in northeastern Malaysia. The International Journal of Occupational and Environmental Medicine, 9(2), 88-96. https://doi.org/10.15171/ijoem.2018.1164.

De Oliveira, V. (2012). Bayesian analysis of conditional autoregressive models. Annals of the Institute of Statistical Mathematics, 64(1), 107-133. https://doi.org/10.1007/s10463-010-0298-1.

Department of Statistics Malaysia Official Portal, “Current Population Estimate, Malaysia. Retrived September 13, 2021 from https://www.dosm.gov.my/v1/index.php?r=column%2FcthemeByCat&cat=155&bul_id=ZjJOSnpJR21sQWVUcUp6ODRudm5JZz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09.

Desvars-Larrive, A., Smith, S., Munimanda, G., Bourhy, P., Waigner, T., Odom, M., Gliga, D. S., & Walzer, C. (2020). Prevalence and risk factors of Leptospira infection in urban brown rats (rattus norvegicus), Vienna, Austria. Urban Ecosystems, 23(4), 775-784. https://doi.org/10.1007/s11252-020-00957-9.

Esteva, L., & Vargas, C. (1998). Analysis of a dengue disease transmission model. Mathematical Biosciences, 150(2), 131-151. https://doi.org/10.1016/s0025-5564(98)10003-2.

Garba, B., Bahaman, A. R., Khairani-Bejo, S., Zakaria, Z., & Mutalib, A. R. (2017). Retrospective study of leptospirosis in Malaysia. EcoHealth, 14(2), 389-398.

Garba, B., Bahaman, A. R., Bejo, S. K., Zakaria, Z., Mutalib, A. R., & Bande, F. (2018). Major epidemiological factors associated with leptospirosis in Malaysia. Acta Tropica, 178, 242-247. https://doi.org/10.1016/j.actatropica.2017.12.010.

Haake, D. A., & Levett, P. N. (2014). Leptospirosis in humans. Current Topics in Microbiology and Immunology, 65-97. https://doi.org/10.1007/978-3-662-45059-8_5.

Holt, J., Davis, S., & Leirs, H. (2006). A model of leptospirosis infection in an African rodent to determine risk to humans: Seasonal fluctuations and the impact of rodent control. Acta Tropica, 99(2-3), 218-225. https://doi.org/10.1016/j.actatropica.2006.08.003.

Ideris, S. H., Malim, M. R., & Shaadan, N. (2020). General mathematical transmission model of leptospirosis: A review. Journal of Critical Review, 7(13), 2951-2959. https://doi.org/10.31838/jcr.07.13.455.

Ideris, S. H., Shaadan, N., Shair, S. N., Samat, N. A., Mohd-Taib, F. S., Chee, H. Y., Rosli, M. Z., & Wong, P. (2022). Estimation of the rat population and the number of leptospirosis infectious rats via the degree of infectious spatial-temporal weighting (DISTW) method. 2022 Applied Informatics International Conference (AiIC). https://doi.org/10.1109/aiic54368.2022.9914588.

Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases: In humans and animals. Princeton, UK: University Press.

Khairani-Bejo, S., A. R. Bahaman, M. Zamri-Saad and A. R. Mutalib. (2004). The survival of leptospira interrogans Serovar Hardjo in the Malaysia environment. Journal of Animal and Veterinary Advances, 3,123-129

Khan, M. A., Ali, Z., Dennis, L. C., Khan, I., Islam, S., Ullah, M., & Gul, T. (2015). Stability analysis of an SVIR epidemic model with non-linear saturated incidence rate. Applied Mathematical Sciences, 9, 1145-1158.

Lawson, A. B. (2006). Statistical methods in spatial epidemiology (2nd ed.). Chichester: Wiley.

Lim, J. K., Murugaiyah, V. A., Ramli, A. S., Abdul Rahman, H., Mohamed, N. S. F., Shamsudin, N. N., & Tan, J. C. (2011). A Case Study: Leptospirosis in Malaysia. (20 December 2011). Retrieved from http://www.webmedcentral.com/wmcpdf/ ArticleWMC002703.pdf.

Maas, M., De Vries, A., Reusken, C., Buijs, J., Goris, M., Hartskeerl, R., Ahmed, A., Van Tulden, P., Swart, A., Pijnacker, R., Koene, M., Lundkvist, Å., Heyman, P., Rockx, B., & Van Der Giessen, J. (2018). Prevalence of leptospira spp. and Seoul hantavirus in brown rats (rattus norvegicus) in four regions in the Netherlands, 2011-2015. Infection Ecology & Epidemiology, 8(1), 1490135. https://doi.org/10.1080/20008686.2018.1490135.

Madhu S, Aparna Y. (2008). Leptospirosis: Epidemiology, diagnosis and control. J Infect Dis Antimicrob Agents, 25(4), 93-101

Minter, A., Diggle, P. J., Costa, F., Childs, J., Ko, A. I., & Begon, M. (2017). Evidence of multiple intraspecific transmission routes for Leptospira acquisition in Norway rats (rattus norvegicus). Epidemiology and Infection, 145(16), 3438-3448. https://doi.org/10.1017/s0950268817002539.

Minter, A., Diggle, P. J., Costa, F., Childs, J., Ko, A. I., & Begon, M. (2018). A model for leptospire dynamics and control in the Norway rat (Rattus norvegicus) the reservoir host in urban slum environments. Epidemics, 25, 26-34. Doi: 10.1016/j.epidem.2018.05.002.

Muñoz-Zanzi, C., Mason, M., Encina, C., Astroza, A., & Romero, A. (2014). Leptospira contamination in household and environmental water in rural communities in southern Chile. International Journal of Environmental Research and Public Health, 11(7), 6666-6680. https://doi.org/10.3390/ijerph110706666.

Nally, J. E., Wilson-Welder, J. H., Hornsby, R. L., Palmer, M. V., & Alt, D. P. (2018). Inbred rats as a model to study persistent renal leptospirosis and associated cellular immune responsiveness. Frontiers in Cellular and Infection Microbiology, 8. https://doi.org/10.3389/fcimb.2018.00066.

Pongsumpun, P. (2013). mathematical model for the transmission of leptospirosis in juvennile and adults humans. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 6(12), 1639-1644.

Program Kemahiran Teknikal. Dewan Negeri Selangor. (2013). Retrieved March 9, 2022, from http://dewan.selangor.gov.my/question/program-kemahiran-teknikal/.

Rahmat, F., Zulkafli, Z., Juraiza Ishak, A., Mohd Noor, S. B., Yahaya, H., & Masrani, A. (2020). Exploratory data analysis and artificial neural network for prediction of leptospirosis occurrence in Seremban, Malaysia based on meteorological data. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00377.

Rodrigues, H. S. (2016). Application of SIR epidemiological model: New trends. International Journal of Applied Mathematics and Informatics, 10, 92-97.

Rodrigues, E. C., Assunção, R. M. (2012). Bayesian spatial models with a mixture neighborhood structure. Journal of Multivariate Analysis, 109, 88-102. Doi: 10.1016/j.jmva.2012.02.017.

Samat, N. A. (2012). Mathematical models for Vector-Borne infectious disease mapping with application to dengue disease in Malaysia (Unpublished doctoral dissertation). University of Salford, Manchester, UK.

Tan, W. L., Soelar, S. A., Mohd, M. A., Hussin, N., Cheah, W. K., Verasahib, K., & Goh, P. P. (2016). Leptospirosis Incidence and Mortality in Malaysia. The Southeast Asian Journal of Tropical Medicine and Public Health, 47(3), 434-40.

Thayaparan, S., Robertson, I. D., Fairuz, A., Suut, L., & Abdullah, M. T. (2013). Leptospirosis, an emerging zoonotic disease in Malaysia. The Malaysian Journal of Pathology, 35(2), 123-132.

Triampo, W., Baowan, D., Tang, I. M., Nuttavut, N., Wong-Ekkabut, J., & Doungchawee, G. (2007). A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Medical and Health Sciences, 2(1), 22-26.

Triampo, W., Baowan, D., Tang, I. M., Nuttavut, N., Wong-Ekkabut, J., & Doungchawee, G. (2007). A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Medical and Health Sciences, 2(1), 22-26.

Wasiński, B., & Dutkiewicz, J. (2013). Leptospirosis--current risk factors connected with human activity and the environment. Annals of agricultural and environmental medicine: AAEM, 20(2), 239-244.

Wynwood, S. J., Graham, G. C., Weier, S. L., Collet, T. A., McKay, D. B., & Graig, S. B. (2014). Leptospirosis from water sources. Pathogen and Global Health, 108(7), 334-338. Doi:10.1179/2047773214Y.0000000156.

Zakariya, K., Che Haron, R., Tukiman, I., Ab. Rahman, S. A., & Harun, N. Z. (2020). Landscape characters for tourism routes: Criteria to attract special interest tourists to the Kuala Selangor–Sabak Bernam route. Planning Malaysia, 18. https://doi.org/10.21837/pm.v18i14.843.

Zeiman. (2013, June 1). Tikus Timbulkan Masalah Serius Dalam Masyarakat. MStar Urban Versatil. Retrieved April 8, 2022, from https://www.mstar.com.my/lokal/semasa/2013/06/01/tikus-timbulkan-masalah-serius-dalam-masyarakat?itm_source=parsely-api.

World Health Organization. (2003). Human leptospirosis: Guidance for diagnosis, surveillance and control. World Health Organization.

Downloads

Published

08-02-2024