Isolation and Identification of Halophilic Bacteria Isolated from Mangrove Soil in Blue Lagoon, Port Dickson, Negeri Sembilan

Authors

  • Siti Khadijah Azmi School of Biology, Universiti Teknologi MARA (UiTM) Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia
  • Nur Zahra Zainal Fuadi School of Biology, Universiti Teknologi MARA (UiTM) Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia
  • Ilyanie Yaacob School of Biology, Universiti Teknologi MARA (UiTM) Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v20n4.3179

Keywords:

Halophiles, Halophilic bacteria, Mangrove soil, Blue Lagoon, Bacillus sp., Cytobacillus oceanisediminis.

Abstract

Halophiles bacteria are capable of tolerating and surviving in extreme salinity due to the special biological structure that it possesses. Classification of halophilic bacteria includes slight, moderate, and extreme halophiles which range from low to high concentrations of salt. Biotechnological products yielded from bacteria residing in saline environment are proven to be valuable in a few industries. The isolated halophilic bacteria may yield powerful biomolecules such as enzymes which can enhance plant development, hence boosting agricultural industries. However, the insufficient data related to halophiles available in Malaysia may reduce the potential use of these bacteria in related industries. The goal of this study is to isolate and identify the potential halophilic bacteria and to determine the tolerance of halophiles in different concentrations of salt. Collection of soil samples was done at the mangrove soil in Blue Lagoon, Port Dickson, Negeri Sembilan. Isolation and purification of halophiles was done on nutrient agar media supplemented with 3% salt. Next, Gram-staining was performed on 4 colonies of bacteria with different types of single colony appearances. Then, the selected bacteria with different colony and morphological characteristics were tested in nutrient broth supplemented with 0%, 3%, 10% and 20% of salt. Molecular identification was conducted which involved DNA extraction and Polymerase Chain Reaction. All 4 isolates selected were tested to be Gram-stain positive and possessed rod-shaped. The bacteria have various salinity tolerance levels which may be due to the presence of different enzymes produced in their cells. Gene sequences and phylogenetic tree were analyzed based on 16s rRNA sequences to identify the species of the isolates. At the end of the experiment, isolate 2A1 and 2A4 were identified as Bacillus sp., while isolate 2A2 and 2A3 were identified as Cytobacillus oceanisediminis.

References

Nizam, A., Meera, S. P., & Kumar, A. (2021). Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience, 25(1), 103547.

Othman, R., & Wan Daud, W. M. (2018). Identification and characterization of Pteroplinthite mangrove forests. Journal of Architecture, Planning & Construction Management, 8(1), 55–63.

Wan Ahmad, W. J., Ahmad, N., & Mohamed, A. L. (2018). Mangrove flora of Malaysia. Bandar Baru Bangi, Selangor: UKM Press.

Kavitha, K., Bharthi, S., Kumaran, S., Ponmozhi, M., & Suresh, G. (2023). Exploration of phyto-beneficial traits of halophilic rhizobacteria isolated from the mangrove halophyte Avicennia marina. Archives of Phytopathology and Plant Protection, 56(18), 1450–1466.

Mahadevaswamy, & Nagaraju, Y. (2018). Role of halophilic microorganisms in agriculture. Journal of Pharmacognosy and Phytochemistry, 7(3), 1063–1071.

Gaffney, E. M., Simoska, O., & Minteer, S. D. (2021). The use of electroactive halophilic bacteria for improvements and advancements in environmental high saline biosensing. Biosensors, 11(2), 48. https://doi.org/10.3390/bios11020048

Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8–9), 825–834.

Lam, M. Q., Vodovnik, M., Zorec, M., Chen, S. J., Goh, K. M., Yahya, A., Md Salleh, M., Ibrahim, Z., Tokiman, L., McQueen-Mason, S. J., Bruce, N. C., & Chong, C. S. (2020). Robertkochia solimangrovi sp. nov., isolated from mangrove soil, and emended description of the genus Robertkochia. International Journal of Systematic and Evolutionary Microbiology, 70(3), 1769–1776.

Halder, D., Dutta, P., Mondal, A., & Basu, M. (2016). Isolation and characterization of halophilic bacteria from Sundarban soil. International Journal of Life-Sciences Scientific Research, 2(4).

Abd Samad, N. S., Amid, A., Jimat, D. N., & Ab. Shukor, N. A. (2017). Isolation and identification of halophilic bacteria producing halotolerant protease. Science Heritage Journal, 1(1), 7–9.

DasSarma, S., & DasSarma, P. (2015). Halophiles and their enzymes: Negativity put to good use. Current Opinion in Microbiology, 25, 120–126.

Omar, H., Misman, M. A., & Linggok, V. (2018). Characterizing and monitoring of mangroves in Malaysia using Landsat-based spatial-spectral variability. IOP Conference Series: Earth and Environmental Science, 169, 012037.

Rahman, S. S., Siddique, R., & Tabassum, N. (2017). Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Research Notes, 10, 531.

Javid, P., Zadabbas Shahabadi, H., Amirkhani, H., Amrollahi, N., & Ranjbar, M. S. (2020). Isolation and identification of halophilic and halotolerant bacteria from the sediments of the Qeshm Island mangrove forest. Advances in Oceanography and Limnology, 11(1).

Bandopadhyay, P. (2014). Isolation of halophilic anaerobic bacteria from the core delta area of West Bengal: Its possible impact on human health and environment. International Journal of Pharmacy and Pharmaceutical Sciences, 6(3), 189–191.

Tripathi, N., & Sapra, A. (2022). Gram staining. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK562156/

Ji, C., Tian, H., Wang, X., Song, X., Ju, R., Li, H., Gao, Q., Li, C., Zhang, P., Li, J., Hao, L., Wang, C., Zhou, Y., Xu, R., Liu, Y., Du, J., & Liu, X. (2022). Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in wheat (Triticum aestivum). BioMed Research International, 9506227.

Ilyanie, H. Y., Huda-Faujan, N., Ida Muryany, M. Y., & Zuraida, J. (2022). Isolation and characterization of probiotic lactic acid bacteria from Malaysian fermented fish products budu and bosou. International Food Research Journal, 29(2), 338–348.

Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments: JoVE, (62), 3923.

Koontz, L. (2013). Agarose gel electrophoresis. Methods in Enzymology, 529, 35–45.

Wheeler, D., & Bhagwat, M. (2007). Chapter 9. BLAST QuickStart: Example-driven web-based BLAST tutorial. In N. H. Bergman (Ed.), Comparative Genomics (Vols. 1 & 2). Humana Press.

Pallavi, Mishra, R. K., Sahu, P. K., Mishra, V., Jamal, H., Varma, A., & Tripathi, S. (2023). Isolation and characterization of halotolerant plant growth promoting rhizobacteria from the mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science, 14.

Mishra, R. R., Dangar, T. K., Rath, B., & Thatoi, H. N. (2009). Characterization and evaluation of stress and heavy metal tolerance of some predominant Gram-negative halotolerant bacteria from mangrove soils of Bhitarkanika, Orissa, India. African Journal of Biotechnology, 8(10).

Remonsellez, F., Castro-Severyn, J., Pardo-Esté, C., Aguilar, P., Fortt, J., Salinas, C., Barahona, S., León, J., Fuentes, B., Areche, C., Hernández, K. L., Aguayo, D., & Saavedra, C. P. (2018). Characterization and salt response in recurrent halotolerant Exiguobacterium sp. SH31 isolated from sediments of Salar de Huasco, Chilean Altiplano. Frontiers in Microbiology, 9, 2228.

Kapadia, C., Sayyed, R. Z., El Enshasy, H. A., Vaidya, H., Sharma, D., Patel, N., Malek, R. A., Syed, A., Elgorban, A. M., Ahmad, K., & Zuan, A. T. K. (2021). Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability, 13(15), 8369.

Edbeib, M. F., Wahab, R. A., & Huyop, F. (2016). Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology & Biotechnology, 32(8), 135.

Irshad, A., Ahmad, I., & Kim, S. B. (2014). Culturable diversity of halophilic bacteria in foreshore soils. Brazilian Journal of Microbiology, 45(2), 563–572.

Benítez-Mateos, A. I., & Paradisi, F. (2023). Halomonas elongata: A microbial source of highly stable enzymes for applied biotechnology. Applied Microbiology and Biotechnology, 107, 3183–3190.

Shabaan, M., Asghar, H. N., Zahir, Z. A., Sardar, M. F., Parveen, R., Faiza, & Ali, Q. (2022). Halotolerant rhizobacterial consortium confers salt tolerance to maize under naturally salt-affected soil. Soil Science Society of America Journal, 86, 1264–1279.

Garibyan, L., & Avashia, N. (2013). Polymerase chain reaction. The Journal of Investigative Dermatology, 133(3), 1–4.

Downloads

Published

27-08-2024