Effects of Bio-Amendment of Coconut Dust with Empty Fruit Bunch Compost on the Efficacy of Mycorrhizae Under Deficit Fertigation

Authors

  • Mohd Fauzihan Karim ᵃSustainable Agriculture and Green Technology Research, Kulliyyah of Science, International; Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia; ᵇDepartment of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Mohd Razi Ismail Institute of Tropical Agriculture and Food Research, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia https://orcid.org/0000-0001-5670-9279

DOI:

https://doi.org/10.11113/mjfas.v19n6.3164

Keywords:

Fertigation, water deficit, PSII, evapotranspiration, compost

Abstract

It has been known that the application of beneficial fungi and compost, has a favourable effect on easing water deficiency stress in plants, hence helping to boost agricultural activities in times of climate uncertainty. In this study, the influence of arbuscular mycorrhizal fungi (AMF) in combination with oil palm empty fruit bunch compost (EFB) on the growth, yield, and physiology of chilli under deficit fertigation was investigated. Throughout the study, five-week-old chilli seedlings were fertigated daily with 100% and 60% of daily evapotranspiration (ET) readings. Three days after transplanting, 10g of sandy soil containing roughly 120-150 mycorrhizal spores was applied to the root zone. Physiological data such as real-time photosynthesis and stomatal conductance were measured at vegetative, early flowering, fruit setting, and maturity or harvesting stages. Meanwhile, yield and morphological measurements were recorded at the end of the study. It was discovered that the addition of EFB to the coconut coir dust media enhanced the beneficial effects of AMF on all parameters including total biomass, chlorophyll fluorescence Fv/Fm, total chlorophylls, photosynthesis rate and stomatal conductance regardless of fertigation levels. The study also revealed that AMF inoculation alone was less effective than non-inoculation + EFB. In conclusion, it is suggested that incorporation of AMF and EFB compost positively affect the yield, growth and physiology of chilli under deficit fertigation.

References

Agbna, G. H. D., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S. & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, 90-101. https://doi.org/10.1016/j.scienta.2017.05.004.

Ahmad, N. S., Kareem, S. H. S., Mustafa, K. M. & Ahmad, D. A. (2019). Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. Journal of Agricultural Science, 9(2), 88-103. https://doi: 10.5539/jas.v9n2p88.

Aro, E.M., Virgin, I., & Andersson, B. (1993). Photoinhibition of photosynstem-2-inactivation, protein damage and turnover. Biochemica Et Biophysica Acta, 1143, 113-134. https://doi.org/10.1016/0005-2728(93)90134-2.

Auge’, R. M., Stodola, A. J. W., Tims, J. E., & Saxton, A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant Soil, 230, 87-97. https://doi.org/10.1023/A:1004891210871.

Bai, C., Zuo, J., Watkins, C. B., Wang, Q., Liang, H., Zheng, Y., Liu, M. & Ji, Y. (2023). Sugar accumulation and fruit quality of tomatoes under water deficit irrigation. Postharvest Biology and Technology, 195, 112112. https://doi.org/10.1016/j.postharvbio.2022.112112.

Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F., & Ruiz-Lozano, J. M. (2014). New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Molecular Plant-Microbe Interaction, 27(4), 349-363. https://doi:10.1094/MPMI-09-13-0268-R.

Benaffari, W., Boutasknit, A., Anli, M., Ait-El-Mokhtar, M., Ait-Rahou, Y., Ben-Laouane, R., Ben Ahmed, H., Mitsui, T., Baslam, M., & Meddich, A. (2022). The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa. Plants, 11(3), 393. https://doi.org/10.3390/plants11030393.

Caravaca, F., Alguacil, M. M., Hernandez J. A., & Rodan, A. (2005). Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Science, 169(1), 191-197. https://doi.org/10.1016/j.plantsci.2005.03.013.

Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., & Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Frontiers in Plant Science, 10, Article 457. https://doi: 10.3389/fpls.2019.00457.

Cooper, A. (1979). The ABC of NFT: Nutrient film technique. Grower Book.

Costa, J. M., Ortuno, M. F., & Chaves, M. M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49(10), 1421-1434. https://doi.org/10.1111/j.1672-9072.2007.00556.x.

Daniels, B. A., & Skipper, H. D. (1982). Method for the recovery and quantitative estimation of propagules from soil. In N.C. Schenck (Ed.). Method and principal of mycorrhizal research (pp. 29-35). American Phytopathological Society.

Dastogeer, K. M. G., Zahan, M. I., Tahjib-Ul-Arif, M., Akter, M. A. & Okazaki, S. (2020). Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and mssociated Mechanisms: A meta-analysis. Frontiers in Plant Science, 11, 588550. https://doi.org/10.3389/fpls.2020.588550.

Doorenbos, J., & Pruitt, W. O. (1977). Crop water requirements. FAO.

Dorji, K, Behboudian, M. H., & Zegbe-Domı´nguez, J. A. (2005). Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Scientia Horticulturae, 104(2), 137-149. https://doi.org/10.1016/j.scienta.2004.08.015.

Fattori, V., Hohmann, M. S., Rossaneis, A. C., Pinho-Ribeiro, F. A. & Verri W. A. (2016) Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 21(7), 844. https://doi.org/10.3390/molecules21070844.

Ferrol, N., Tamayo, E. & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, 67(22), 6253-6265. https://doi.org/10.1093/jxb/erw403.

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques to measure vesicular-arbuscular infection m roots. New Phytologist, 84(3), 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x.

Gryndler, M., Hršelová, H., Cajthaml, T., Havránková, M., Řezáčová, V., Gryndlerová, H., & Larsen J. (2009). Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, 19(4), 255-266. https://doi: 10.1007/s00572-008-0217-y.

Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-arjani, A. B. F., Aldehaish, H. A., Egamberdieva, D., & AbdAllah, D. (2018). Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Science, 25(6), 1102-1114. https://doi.org/10.1016/j.sjbs.2018.03.009.

He, F., Sheng, M., & Tang, M. (2017). Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Frontiers in Plant Science, 8, Article 183. https://doi: 10.3389/fpls.2017.00183.

Kalaivani, K., & Jawaharlal, M. (2019). Study on physical characterization of coco peat with different proportions of organic amendments for soilless cultivation. Journal of Pharmacognosy and Phytochemistry, 8(3), 2283-2286.

Karim, M. F., & Johnson, G. N. (2021). Acclimation of photosynthesis to changes in the environment results in decreases of oxidative stress in Arabidopsis thaliana. Frontiers in Plant Science, 12, Article 683986. https://doi.org/10.3389/fpls.2021.683986.

Khalvati, M. A., Hu, Y., Mozafar, A., & Schmidhalter, U. (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 7(6): 706-712. https://doi: 10.1055/s-2005-872893.

Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiologyl, 164(4), 1556-1570. https://doi.org/10.1104/pp.114.237107.

Lee, J. Y., & Oh M. M. (2017). Mild water deficit increases the contents of bioactive compounds in dropwort. Horticulture, Environment, and Biotechnology, 58, 458-466. https://doi.org/10.1007/s13580-017-0007-6.

Li, J., Meng B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., & Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (leymus chinensis) and C4 (hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontier in Plant Science, 10, Article 499. https://doi: 10.3389/fpls.2019.00499.

Ludwig-Müller, J. (2010). Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In H. Koltai & Y. Kapulnik (Eds.). Arbuscular mycorrhizas: physiology and function (pp 169-190). Dordrecht: Springer. https://doi: 10.1007/978-90-481-9489-6_8.

Martínez-Cano, B., García-Trejo, J.F., Sánchez-Gutiérrez, A.E., Toledano-Ayala, M., & Soto-Zarazúa, G.M. (2022). Isolation and characterization of plant growth-promoting compost bacteria that improved physiological characteristics in tomato and lettuce seedlings. Agriculture, 12(1), 3. https://doi.org/10.3390/agriculture12010003.

McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N. R., Brendel, O., & Lawson, T. (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist, 211(4), 1209-1220. https://doi.org/ doi: 10.1111/nph.14000.

McElrone, A. J., Choat, B., Gambetta, G. A., & Brodersen, C. R. (2013). Water uptake and transport in vascular plants. Nature Education Knowledge, 4(5), 6.

Mena-Violante, H. G., Ocampo-Jimenez, O., Dendooven, L., Martinez-Soto, G., Gonzalez-Castafeda, J., Davies, F. T., & Olalde-Portugal, V. (2006). Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought. Mycorrhiza, 16, 261-267. https://doi: 10.1007/s00572-006-0043-z.

Moriana, A., Orgaz, F., Pastor, M., & Fereres, E. (2003). Yield responses of a mature olive orchard to water deficits. Journal of the American Society for Horticultural Science, 128(3), 425-431. https://doi.org/10.21273/JASHS.128.3.0425.

Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica Et Biophysica Acta-Bioenergetics, 1767, 414-421. https://doi.org/10.1016/j.bbabio.2006.11.019.

Nadler, A., & Heuer, B. (1995). Effect of saline irrigation and water deficit on tuber quality. Potato Research, 38, 119-123. https://doi.org/10.1007/BF02358078.

Pedranzani, H., RodrãGuez-Rivera, M., GutiaRrez, M., Porcel, R., Hause, B., & Ruiz-Lozano, J. M. (2016). Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26(2), 141-152. https://doi: 10.1007/s00572-015-0653-4.

Phillips, J., & Hayman, D. S. (1970). Improved procedure for clearing roots and staining parasitic and vesicular mycorrizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 185-161 https://doi.org/10.1016/S0007-1536(70)80110-3.

Porcel, R., Redondogómez, S., Mateosnaranjo, E., Aroca, R., Garcia, R., & Ruizlozano, J. M. (2015). Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology, 185, 75-83. https://doi: 10.1016/j.jplph.2015.07.006.

Pozo de la Hoz, J., Rivero, J., Azcón-Aguilar, C., Urrestarazu, M. & Pozo, M.J. (2021). Mycorrhiza-induced resistance against foliar pathogens is uncoupled of nutritional effects under different light intensities. Journal of Fungi, 7(6), 402. https://doi: 10.3390/jof7060402.

Ravnskov, S., Jensen, B., Knudsen, I. M. B., Bodker, L., Jensen, D. F., Karlinski, L., & Larsen, J. (2006). Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intra-radices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil Biology and Biochemisty, 38(12), 3453-3462. https://doi:10.1016/j.soilbio.2006.06.003.

Ruiz-Lau, N., Medina-Lara, F., Minero-García, Y., Zamudio-Moreno, E., Guzma’n-Antonio, A., Echevarría-Machado, I. & Martínez-Estévez, M. (2011). Water deficit affects the accumulation of capsaicinoids in fruits of Capsicum chinense Jacq. HortScience, 46(3), 487 492. https://doi.org/10.21273/HORTSCI.46.3.487.

Ruiz-Lozano, J. M., Porcel, R., & Aroca, R. (2006). Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytologist, 171(4), 693-698. https://doi.org/10.1111/j.1469-8137.2006.01841.x.

Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13(6), 309-317. https://doi: 10.1007/s00572-003-0237-6.

Shakib, A. K., Nejad, A. R., Mirkohi, A. K., & Jari, S. K. (2019). Vermicompost and manure compost reduce water-deficit stress in pot marigold (Calendula officinalis L. cv. Candyman Orange). Compost Science & Utilization, 27(1), 61-68. https:// doi: 10.1080/1065657X.2019.1602489.

Soka, G. E., & Ritchie, M. E. (2016). Contributions of AM fungi and soil organic matter to plant productivity in tropical savanna soils under different land uses. Rhizosphere, 1, 45-52. https://doi.org/10.1016/j.rhisph.2016.06.004.

Stella, M., & Sashikala, M. (2016). Beneficial microorganisms isolated from vegetable compost. Journal of Tropical Agriculture and Food Science, 44(2), 277-293.

Ünlü, M., Kanber, R., Senyigit, U., Onaran, H., & Diker, K. (2006). Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the middle Anatolian region in Turkey. Agricultural Water Management, 79(1), 43-71. https://doi.org/10.1016/j.agwat.2005.02.004.

Valcárcel, M., Lahoz, I., Campillo, C., Martí, R., Leiva-Brondo, M., Rosello, S. & Cebolla-Cornejo, J. (2020). Controlled deficit irrigation as a water-saving strategy for processing tomato. Scientia Horticulturae, 261, 108972. https://doi.org/10.1016/j.scienta.2019.108972.

Vass, I. (2011). Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiologia Plantarum, 142(1), 6-16. https://doi: 10.1111/j.1399-3054.2011.01454.x.

Wu, Q. S., Zou, Y. N., Xia, R. X, & Wang, M. Y. (2007). Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies, 48(2), 147-158.

Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425. https://doi.org/10.1016/j.jplph.2005.04.024.

Wickramaarachchi, T. N., Ranaweera, R. C. W., & Kumara, R. A. J. P. (2020). Soil surface evaporation control by plant-based mulching during the energy limiting and falling rate evaporation stages. Engineer, 53(4), 11-20. http://doi.org/10.4038/engineer.v53i4.7424.

Yang, H., Liu, H., Zheng, J. & Huang, Q. (2018). Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science, 36, 61-74. https://doi.org/10.1007/s00271-017-0566-4.

Ye, Q., Wang, H., & Li, H. (2022). Arbuscular mycorrhizal fungi improve growth, photosynthetic activity, and chlorophyll fluorescence of vitis vinifera L. Cv. Ecolly under drought stress. Agronomy, 12(7), Article 1563. https://doi.org/10.3390/agronomy12071563.

Zhang, T., Hu, Y., Zhang, K., & Tian, C. (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13-19. https://doi.org/10.1016/j.indcrop.2018.02.087.

Zhu, Y, Yu, J., Brecht, J., K., Jiang, T. & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 573-543. https://doi.org/10.1016/j.foodchem.2015.06.001.

Zuccarini, P. (2007). Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil and Environment, 53(7), 283-289.

Downloads

Published

04-12-2023