Comparative Mitogenome Characterization of Cryptic Asian Seabass (Lates calcarifer) in Captivity within Peninsular Malaysia


  • Athirah Mohd Bakri Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, 43400, Selangor, Malaysia
  • Yuzine Esa ᵃDepartment of Aquaculture, Faculty of Agriculture, University Putra Malaysia, 43400, Selangor, Malaysia; ᵇInternational Institute of Aquaculture and Aquatic Science, University Putra Malaysia, Lot 960 Jalan Kemang 6, 71050 Port Dickson, Negeri Sembilan, Malaysia



Lates calcarifer, cryptic, phylogenetic analysis, mitogenome


Lates calcarifer is one of the most commercial species in the world. Yet, phylogenetic relationships among this cryptic species remain unclear despite its significance in the fishery sector. The first report on bifurcation of captive Lates calcarifer in Peninsular Malaysia (PM) inferred from complete mitochondrial genome was discussed in the present study. Two mitochondrial genomes (mitogenomes) of Lates species were sequenced and assembled. The mitogenome length was 16,627 bp and 16,515 bp for K4 and S15, respectively. The majority of PCGs in both species exhibited the common initiation marker ATG codon and ended with termination marker TAA codon. Also, the incomplete termination codon T/TA was found in both species. Most AT-skew and GC-skew values observed in the protein-coding genes (PCGs) across the two samples were negative. The phylogenetic analysis based on 13 protein-coding genes by Maximum-Likelihood tree displayed two lineages from different regions which were from Myanmar/Indian waters (K4) and Southeast Asia/ Australian waters (S15). The striking genetic distance values between both specimens indicated 13 PCGs were suffering purifying selection. This study offers significant information for future analyses of evolutionary relationships among the numerous and taxonomically puzzling perciform fishes.


Idris, S. M., Noordin, W. N. M., Manah, F. O., & Hamzah. (2022). A. toward systematic breeding of Asian Sea Bass, Lates calcarifer (Bloch, 1790), in Malaysia: Status, challenges and prospects for future development. Asian Fisheries Science, 35(1). Doi: 10.33997/j.afs.2022.35.1.001.

Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350, 117-129. Doi: 10.1016/j.aquaculture.2012.04.008.

Yue, G. H. (2014). Recent advances of genome mapping and marker‐assisted selection in aquaculture. Fish and Fisheries, 15(3), 376-396. Doi: org/10.1111/faf.12020.

Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H., Allen, J. I., Holt, J., & Jennings, S. (2014). Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 4(3), 211-216. DOI:10.1038/nclimate2119.

Wang, L., Bai, B., Huang, S., Liu, P., Wan, Z. Y., Ye, B., Wu, J., & Yue, G. H. (2017). QTL Mapping for resistance to iridovirus in Asian Seabass using genotyping-by-sequencing. Marine Biotechnology, 19(5), 517-527. Doi: 10.1007/s10126-017-9770-8.

Khang, P. V., Phuong, T. H., Dat, N, K., Knibb, W., & Nguyen, N. H. (2018). An 8-year breeding program for Asian seabass Lates calcarifer: Genetic evaluation, experiences, and challenges. Frontiers in Genetics, 9, 191. Doi: 10.3389/fgene.2018.00191.

Robinson, N. A., Schipp, G., Bosmans, J., & Jerry, D. R. (2018). Modelling selective breeding in protandrous, batch‐reared Asian sea bass (Lates calcarifer, Bloch) using walkback selection. Aquaculture Research, 41(10), e643-e655. Doi: 10.1111/j.1365-2109.2010.02584.x.

Lin, G., Lo, L. C., Zhu, Z. Y., Feng, F., Chou, R., & Yue, G. H. (2006). The complete mitochondrial genome sequence and characterization of single-nucleotide polymorphisms in the control region of the Asian seabass (Lates calcarifer). Marine Biotechnology, 8, 71-79. Doi: 10.1007/s10126-005-5051-z.

Vij, S., Purushothaman, K., Gopikrishna, G., Lau, D., Saju, J. M., Shamsudheen, K. V., Vinaya Kumar, K., Basheer, V. S., Gopalakrishnan, A., Hossain, M. S., Sivasubbu, S., Scaria, V., Jena, J. K., Ponniah, A. G., & Orbán. L. (2014). Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species. Frontiers in Marine Science, 1, 1-13. Doi: 10.3389/fmars.2014.00030.

Harrington, R. C., Faircloth, B. C., Eytan, R. I., Smith, W. L., Near, T. J., Alfaro, M. E., & Friedman, M. (2016). Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evolutionary Biology, 16(1), 1-14. Doi: 10.1186/s12862-016-0786-x.

Haque, M. A., Hossain, M. I., Uddin, S. A., & Dey, P. K. (2019). Review on distribution, culture practices, food and feeding, brood development and artificial breeding of Seabass, Lates calcarifer (BLOCH 1790): Bangladesh perspective. Research in Agriculture Livestock and Fisheries, 6(3), 405-414. Doi: 10.3329/ralf.v6i3.44806.

Pethiyagoda, R., & Gill, A. C. (2012). Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka. Zootaxa, 3314(1), 1-16. Doi: 10.11646/zootaxa.3314.1.1.

Bakri, A. M., & Esa, Y. (2021, October). Analysis of genetic diversity in five captive population of Asian Seabass (Lates calcarifer) for selective breeding in Malaysia. 1st Postgraduate Seminar on Agriculture and Forestry 2021 (PSAF 2021) (p. 71).

Yu, P., Zhou, L., Zhou, X. Y., Yang, W. T., Zhang, J., Zhang, X. J., Wang, Y., & Gui, J. F. (2019). Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes. International Journal of Biological Macromolecules, 129, 339-350. Doi: 10.1016/j.ijbiomac.2019.01.200.

Nevatte, R. J., Clark, J. A., Williamson, J. E., & Gillings, M. R. (2019). The complete mitochondrial genome of the Epaulette Shark, Hemiscyllium ocellatum (Bonnaterre, 1788). Mitochondrial DNA Part B, 4(1), 534-535. Doi: 10.1080/23802359.2018.1553511.

Satoh, T. P., Miya, M., Mabuchi, K., & Nishida, M. (2016). Structure and variation of the mitochondrial genome of fishes. BMC Genomics, 17, 1-20. Doi: 10.1186/s12864-016-3054-y.

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890.

Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. Doi: 10.1093/bioinformatics/btv033.

Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T. P., Sado, T., Mabuchi, K., Takeshima, H., Miya, M., & Nishida, M. (2013). MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution, 30(11), 2531-2540. Doi: 10.1093/molbev/mst141.

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. Doi: 10.1093/molbev/mst197.

Ranwez, V., Harispe, S., Delsuc, F., & Douzery, E. J. (2011). MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PloS One, 6(9), e22594. Doi: 10.1371/journal.pone.0022594.

Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W. X., & Wang, G. T. (2020). PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1), 348-355. Doi: 10.1111/1755-0998.13096.

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512-526. Doi: 10.1093/oxfordjournals.molbev.a040023.

Ma, X., Xie, Z., Zhou, L., & Chen, Y. (2016). The complete mitochondrial genome of Acanthopagrus schlegelii (Perciformes: Sparidae) with phylogenetic consideration. Mitochondrial DNA Part B, 1(1), 348-349. Doi: 10.1080/23802359.2016.1144105.

Oh, D. J., & Jung, Y. H. (2019). Mitochondrial genome of Japanese amberjack, Seriola quinqueradiata, and yellowtail amberjack, Seriola lalandi. Mitochondrial DNA Part B, 4(1), 826-827. Doi: 10.1080/23802359.2019.1567281.

Norfatimah, M. Y., Teh, L. K., Salleh, M. Z., Isa, M. M., & Siti Azizah, M. N. (2014). Complete mitochondrial genome of Malaysian Mahseer (Tor tambroides). Gene, 548(2), 263-269. Doi: 10.1016/j.gene.2014.07.044.

Xie, X. Y., Huang, G. F., Li, Y. T., Zhang, Y. T., & Chen, S. X. (2016). Complete mitochondrial genome of Acrossocheilus parallens (Cypriniformes, Barbinae). Mitochondrial DNA Part A, 27(5), 3339-3340. Doi: 10.3109/19401736.2015.1018212.

Tomkova, M., Tomek, J., Kriaucionis, S., & Schuster-Böckler, B. (2018). Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biology, 19(1), 1-12. Doi: 10.1186/s13059-018-1509-y.

Oh, D. J., Kim, J. Y., Lee, J. A., Yoon, W. J., Park, S. Y., & Jung, Y. H. (2007). Complete mitochondrial genome of the rock bream Oplegnathus fasciatus (Perciformes, Oplegnathidae) with phylogenetic considerations. Gene, 392(1-2), 174-180. Doi: 10.1016/j.gene.2006.12.007.

Miya, M., Friedman, M., Satoh, T. P., Takeshima, H., Sado, T., Iwasaki, W., Yamanoue, Y., Nakatani, M., Mabuchi, K., Inoue, J. G., Poulsen, J. Y., Fukunaga, T., Sato, Y., & Nishida, M. (2013). Evolutionary origin of the Scombridae (tunas and mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PloS One, 8(9), e73535. Doi: 10.1371/journal.pone.0073535.

Lü, Z., Zhu, K., Jiang, H., Lu, X., Liu, B., Ye, Y., Jiang, L., Liu, L., & Gong, L. (2019). Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. International Journal of Biological Macromolecules, 135, 609-618. Doi: 10.1016/j.ijbiomac.2019.05.139.

Mu, X., Liu, Y., Lai, M., Song, H., Wang, X., Hu, Y., & Luo, J. (2015). Characterization of the Macropodus opercularis complete mitochondrial genome and family Channidae taxonomy using Illumina-based de novo transcriptome sequencing. Gene, 559(2), 189-195. Doi: 10.1016/j.gene.2015.01.056.

Li, Q., Wang, Q., Jin, X., Chen, Z., Xiong, C., Li, P., Zhao, J., & Huang, W. (2019). Characterization and comparison of the mitochondrial genomes from two Lyophyllum fungal species and insights into phylogeny of Agaricomycetes. International Journal of Biological Macromolecules, 121, 364-372. Doi: 10.1016/j.ijbiomac.2018.10.037.

Brockman, S. A., & McFadden, C. S. (2012). The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biology and Evolution, 4(9), 994-1006. Doi: 10.1093/gbe/evs074.

Hassanin, A., Leger, N., & Deutsch, J. (2005). Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology, 54(2), 277-298. Doi: 10.1080/10635150590947843.

Reyes, A., Gissi, C., Pesole, G., & Saccone, C. (1998). Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Molecular Biology and Evolution, 15(8), 957-966. Doi: 10.1093/oxfordjournals.molbev.a026011.

Zhao, L., Gao, T., & Lu, W. (2015). Complete mitochondrial DNA sequence of the endangered fish (Bahaba taipingensis): Mitogenome characterization and phylogenetic implications. ZooKeys, 546, 181. Doi: 10.3897/ZOOKEYS.546.5964.

Liu, X. Y., Li, Y., Ji, K. K., Zhu, J., Ling, P., Zhou, T., Fan, L.Y., & Xie, S. Q. (2020). Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis. Genomics, 112(4), 2695-2702. Doi: 10.1016/j.ygeno.2020.03.002.

Mthethwa, S., Bester‐van der Merwe, A. E., & Roodt‐Wilding, R. (2023). Addressing the complex phylogenetic relationship of the Gempylidae fishes using mitogenome data. Ecology and Evolution, 13(6), e10217. Doi: 10.1002/ece3.10217.

Zahdeh, F., & Carmel, L. (2019). Nucleotide composition affects codon usage toward the 3'-end. Plos One, 14(12), e0225633. Doi: 10.1371/journal.pone.0225633.

Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27(8), 1767-1780. Doi: 10.1093/nar/27.8.1767.

Zhang, L., Sun, K., Csorba, G., Hughes, A. C., Jin, L., Xiao, Y., & Feng, J. (2021). Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecology and Evolution, 21, 1-15. Doi: 10.1186/s12862-021-01926-2.

Wang, Y., Shen, Y., Feng, C., Zhao, K., Song, Z., Zhang, Y., Yang, L., & He, S. (2016). Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Scientific Reports, 6(1), 1-10. DOI: 10.1038/srep29690.

Yuan, M. L., Zhang, Q. L., Zhang, L. I., Jia, C. L., Li, X. P., Yang, X. Z., & Feng, R. Q. (2018). Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. Molecular Phylogenetics and Evolution, 122, 116-124.

Komissarov, A., Vij, S., Yurchenko, A., Trifonov, V., Thevasagayam, N., Saju, J., Sridatta, P. S. R., Purushothaman, K., Graphodatsky, A., Orbán, L., & Kuznetsova, I. B. (2018). Chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations. Genes, 9(10), 464.

Vij, S., Kuhl, H., Kuznetsova, I. S., Komissarov, A., Yurchenko, A. A., Van Heusden, P., ... & Orbán, L. (2016). Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genetics, 12(4), e1005954.

Wang, L., Wan, Z. Y., Lim, H. S., & Yue, G. H. (2016). Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Molecular Ecology, 25(15), 3605-3621.

Masta, S. E., & Boore, J. L. (2014). The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21(5), 893-902.

Ojala, D., Montoya, J., & Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806), 470-474.

Sharp, P. M., & Matassi, G. (1994). Codon usage and genome evolution. Current Opinion in Genetics & Development, 4(6), 851-860.

Tatarinova, T. V., Alexandrov, N. N., Bouck, J. B., & Feldmann, K. A. (2010). GC 3 biology in corn, rice, sorghum and other grasses. BMC Genomics, 11, 1-18.

Montoya, J., Gaines, G. L., & Attardi, G. (1983). The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell, 34(1), 151-159.

Hogan, R. I., Hopkins, K., Wheeler, A. J., Allcock, A. L., & Yesson, C. (2019). Novel diversity in mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia). Mitochondrial DNA Part A, 30(6), 764-777.

Aguilar, C., Miller, M. J., Loaiza, J. R., Krahe, R., & De León, L. F. (2018). Mitochondrial genomes and phylogenetic analysis of Central American weakly-electric fishes: Apteronotus rostratus, Brachyhypopomus occidentalis and Sternopygus dariensis. bioRxiv, 353565.

Ruan, H., Li, M., Li, Z., Huang, J., Chen, W., Sun, J., Liu, L., & Zou, K. (2020). Comparative analysis of complete mitochondrial genomes of three Gerres fishes (Perciformes: Gerreidae) and primary exploration of their evolution history. International Journal of Molecular Sciences, 21(5), 1874.

Zhu, K. C., Liang, Y. Y., Wu, N., Guo, H. Y., Zhang, N., Jiang, S. G., & Zhang, D. C. (2017). Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile). Scientific Reports, 7(1), 15299.