Fuzzy Intuitionistic Alpha-cut Interpolation Rational Bézier Curve Modeling for Shoreline Island Data

Authors

  • Siti Nasyitah Jaman Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Rozaimi Zakaria ᵃFaculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia; ᵇMathematics Visualization (MathViz) Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Isfarita Ismail Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n6.3126

Keywords:

Uncertainty data, fuzzy set theory, intuitionistic fuzzy set, rational Bézier curve, shoreline island data

Abstract

The problem of uncertain data cannot be solved by conventional methods, which results in inaccurate data analysis and prediction. During the data collecting phase, ambiguous data are often collected, but they cannot be used immediately to generate geometric models. In this case, the new approaches to intuitionistic fuzzy sets will be used to determine the alpha cut value for uncertainty data sets. To solve the uncertainty data and build the mathematical model, this study applied fuzzy set theory, intuitionistic fuzzy sets, and rational Bézier curve geometric modelling. There are three main methods in this study. The triangular fuzzy number is used to define the uncertainty data in the first place. The alpha value can then be found using a centre of mass alpha-cut. The intuitionistic alpha-cut can then be applied to both membership and non-membership data. This procedure, also called fuzzification, is defined as fuzzy intuitionistic into alpha-cut values. The data set will then undergo the defuzzification procedure to get single value data. For the purpose of analysis and conclusion-making, the modeling data for each process will be visualised using an interpolation rational Bézier curve. The findings demonstrate that using the intuitionistic fuzzy set for the alpha-cut value was more effective than the previous method without considering both membership and non-membership values.

References

Atanassov, K. T. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20(1986), 87-96.

Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets. Springer. 1-6.

Atanassov, K. T. (2016). Review and new results on intuitionistic fuzzy sets. International Journal Bioautomation, 20(S1), S17-S14.

Atanassov, K. T. (2017). Type-1 fuzzy sets and intuitionistic fuzzy sets. Algorithms MDPI, 10(106), 1-12.

Ceylan, A. Y. Turhan, T. & Tukel, G. O. (2021). On the Geometry of Rational Bézier Curves. Honan Mathematical J., 43(1), 88-99.

Chaira, T. (2019). Fuzzy set and its extension, The intuitionistic fuzzy set. John Wiley & Sons, Inc. 1-24.

Duan, P. Li, J. Wang, M & Wu, J. (2021). Spatial-temporal analysis of the coastline changes in Fujian Province, China from 1995 to 2015. Journal of Environmental Science and Management, 24(2), 1-9.

Elaiyaperumal, R. Gajivaradhan, P. & Suguna, M. (2019). Defuzzification by Area of Region (AOR) in an intuitionistic fuzzy environment. The International Journal of Analytical and Experimental Modal Analysis. XI(IX), 3282-3288.

Holdaway, A. & Ford, M. (2019). Resolution and scale controls on the accuracy of atoll island shorelines interpreted from satellite imagery. Springer Applied Geomatics, 1-14.

Karim, N. A. A., Wahab, A. F., Gobithaasan, R. U., & Zakaria, R. (2013). Model of fuzzy b-spline interpolation for fuzzy data. Far East Jounal of Mathematical Sciences (FJMS). 72(2): 269-280.

Sen, Z. (2010). Fuzzy Logic and Hydrological Modeling. Taylor and Francis Group, LLC. 203-209.

Talibe, A. Zakaria, R. Bade, A. & Zenian, S. (2019). Integrated-uncertainty fuzzy bezier curve modelling. ASM Sci. J., Special Issue, 6162-166

Wahab, A. F. Md Ali, J. Abd Majid, A. & Md Tap, A. O. (2004). Fuzzy set in geometric modeling. Proceedings of the International Conference on Computer Graphics, Imaging and Visualization.1-6.

Wahab, A. F. Zakaria, R. & Ali, J. M. (2010). Fuzzy interpolation rational Bézier curve. Seventh International Conference on Computer Graphics, Imaging and Visualization. 63-67.

Wahab, A. F. & Zakaria, R. (2012). Fuzzy interpolation rational cubic Bézier curves modeling of blurring offline handwriting signature with different degree of blurring. Applied Mathematical Sciences, 6(81), 4005-4016.

Wang, G. Z. & Wang, G. J. (1992). The rational cubic Bézier representation of conics. Computer Aided Geometric Design, 9, 447-455.

Wang, X. & Wang, F. (2020). The precision of google earth map analysis with the coordinates of IGS stations. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XLII-3(W10), 1053-1056.

Yadav, A. Bodamani, B. M. & Dwarakish, G. S. (2017). Shoreline change: A review. Proceedings Volume of International Conference. 5-10.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Zakaria, R., & Wahab, A. F. (2013). Fuzzy set theory in modeling uncertainty data via interpolation rational Bézier surface function. Applied Mathematical Science, 7(45), 2229-2238.

Zakaria, R. Jifrin, A. N. Jaman, S. N. & Roslee, R. (2022). Fuzzy Interpolation Curve Modelling of Earthquake Magnitude Data. IOP Conferences Series: Earth and Environmental Science, 1103, 1-11.

Zakaria, R. Suhaimi, N. A. Jifrin, A. N. & Jaman, S. N. (2021). The determining of alpha value for alpha-cut operation by using triangular polygon centroid. 14th Seminar on Science and Technology, 233-236.

Zakaria, R. Wahab, A. F. & Ismail, I. (2019). B-Spline curved surface modeling. ASM Science Journal, 2, 114 -119.

Zulkifly, M. E. E. & Wahab, A. F. (2015). Intuitionistic Fuzzy in Spline Curve/Surface. Malaysian Journal of Fundamental and Applied Sciences, 11(1), 21-23.

Zulkifly, M. I. E. Wahab, A. F. & Zakaria, R. (2020). B-spline curve interpolation model by using intuitionistic fuzzy approach. IAENG International Journal of Applied Mathematics, 50(4), 1-7.

Downloads

Published

04-12-2023