Non-Contact Electric Field May Induced Higher CD4, CD8, Caspase-8, and Caspase-9 Protein Expression in Breast Tumor Tissue of Rats (Rattus norvegicus Berkenhout, 1769)


  • Ardaning Nuriliani Laboratory of Animal Structure and Development, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Luthfi Nurhidayat Laboratory of Animal Structure and Development, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Hindana Fatmasari Undergraduate Program, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Dalila Afina Undergraduate Program, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Firman Alamsyah Ctech Labs Edwar Technology, Tangerang, Banten, 15320, Indonesia
  • Warsito Purwo Taruno Ctech Labs Edwar Technology, Tangerang, Banten, 15320, Indonesia
  • Rarastoeti Pratiwi Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia



Non-contact electric field, immunity, apoptosis, breast tumor, Rattus norvegicus


Non-contact electric field therapy has been studied as one of less invasive and safe alternative method in cancer therapy. Some studies reported that non-contact electric field therapy with low intensity (50 - 60 V/m) and medium frequency (150 kHz) could slower the rat’s breast tumor growth and did not cause significant damage on the rat's kidney and liver. However, further study needed to evaluate the potency of non-contact electric field to be developed into effective cancer therapy. Thus, we investigated the immune response of non-contact electric field therapy through the detection of CD4 and CD8 protein expression and the mechanism of apoptosis through the detection of caspase-8 and caspase-9 proteins on breast tumor tissue of rats. Twenty four rats were divided into 4 groups: 1. non-induction - non-therapy (NINT), 2. non-induction - therapy (NIT), 3. induction - non-therapy (INT), and 4. induction - therapy (IT). DMBA (7,12-dimethylbenz(α)anthracene) 20 mg/kg body weight was used to induced breast tumor formation. Rats with breast nodules that had reached 1 cm in size were exposed to an ECCT device with 150 kHz and 50 - 60 V/m electric fields. Further, the breast tissues were collected for routine histological and immunohistochemistry preparation for CD4, CD8, caspase 8, as well as caspase 9 detection. The data were statistically analyzed using Mann-Whitney U-Test method, with a significance level of p < 0.05 using the SPSS 16.0 version. The scoring results were compared between the INT and IT groups. Our results showed that non-contact electric field therapy could suppress breast tumor growth and improved its histological structure. Interestingly, the breast tissue of IT group qualitatively had slightly more necrotic and apoptotic cells than that of INT group. Moreover, the IT group showed by higher CD4 and CD8 as well as higher caspase 8 and caspase 9 expression. Collecting all the data together, we concluded that non-contact electric field therapy potent to improve histological structure of breast tumor.


-[1] Alamsyah, F. Ajrina I. N. Dewi F. N. A. Iskandriati, D. Prabandari, S. A., Taruno, W. P. (2015). Anti-proliferative effect of electric fields on breast tumor cells in vitro and in vivo. Indonesian Journal of Cancer Chemoprevention, 6(3), 71-77.

Alamsyah F, Pratiwi R, Firdausi N et al. (2021). Cytotoxic T cells response with decreased CD4/CD8 ratio during mammary tumors inhibition in rats induced by non-contact electric fields. F1000Research, 10, 35.

Arsenault, M. E., Zhao, H., Purohit, P. K., Goldman, Y. E., & Bau, H. H. (2007). Confinement and manipulation of actin filaments by electric fields. Biophysical Journal, 93(8).

Bancroft, J. & Cook, H. (1994). Manual of histology techniques and their diagnostic application. Churchill Livingstone. London. 6, 73-95.

Berghe, et al. (2010). Necroptosis, necrosis, and secondary necrosis converge on similiar cellular disintegration features. Cell Death & Differentiation, 17(6), 922-930.

Chui, P. (2019). Cancer- and chemotherapy-related symptoms and the use of complementary and alternative medicine. Asia-Pacific Journal of Oncology Nursing, 6(1), 4.

Ciria, H. C., Quevedo, M. S., Cabrales, L. B., Bruzón, R. P., Salas, M. F., Pena, O. G., González, T. R., López, D. S., & Flores, J. M. (2004). Antitumor effectiveness of different amounts of electrical charge in ehrlich and fibrosarcoma sa-37 tumors. BMC Cancer, 4, 87.

Cullen, S. P., Brunet, M., & Martin, S. J. (2010). Granzymes in cancer and immunity. Cell Death and Differentiation, 17(4), 616-623.

Dawson, T. W., Stuchly, M. A., & Kavet, R. (2004). Electric fields in the human body due to electrostatic discharges. IEEE Transactions on Biomedical Engineering, 51(8), 1460-1468.

Eighmy, J. J., Sharma, A. K., & Blackshear, P. E. (2018). Mammary Gland. in Boorman’s Pathology of the rat. Elsevier. Virginia. 7, 369-388.

Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol Pathol, 35(4), 495-516.

Feng, M., C. Feng, Z. Yu, Q. Fu, Z. Ma, F. Wang, F. Wang, and L. Yu. (2015). Histopathological alterations during breast carcinogenesis in a rat model induced by 7,12-dimethylbenz (a) anthracene and estrogen progestogen combinations. International Journal of Clinical and Experimental Medicine, 8(1), 346-357.

Giladi, M., Schneiderman, R. S., Voloshin, T., Porat, Y., Munster, M., Blat, R., Sherbo, S., Bomzon, Z., Urman, N., Itzhaki, A., Cahal, S., Shteingauz, A., Chaudhry, A., Kirson, E. D., Weinberg, U., & Palti, Y. (2015). Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Scientific Reports, 5(11), 1-16.

Gong, Y., Fan, Z., Luo, G. et al. (2019). The role of necroptosis in cancer biology and therapy. Mol Cancer, 18(100), 1-17.

Huang, Y., Ma, C., Zhang, Q., Ye, J., Wang, F., Zhang, Y., Hunborg, P., Varvares, M. A., Hoft, D. F., Hsueh, E. C., & Peng, G. (2015). CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget, 6(19), 17462-17478.

Hunter, M. C., Teijeira, A., & Halin, C. (2016). T cell trafficking through lymphatic vessels. Frontiers in Immunology, 7(12).

Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G., & Schoenberger, S. P. (2003). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature, 421(6925), 852-856.

Kadir, L. A., Stacey, M., & Barrett-Jolley, R. (2018). Emerging roles of the membrane potential: Action beyond the action potential. Frontiers in Physiology, 9(11), 1-10.

Kim, E. H., Kim, Y. J., Song, H. S., Jeong, Y. K., & Lee, J. Y. (2016). Biological effect of an alternating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation. Oncotarget, 7(38).

Kirsch, D. L., Price, L. R., Nichols, F., Marksberry, J. A., & Platoni, K. T. (2014). Military service member and veteran self reports of efficacy of cranial electrotherapy stimulation for anxiety, posttraumatic stress disorder, insomnia, and depression. The US Army Medical Dept Juournal J, 10, 46-54.

Kirson, E. D., Giladi, M., Gurvich, Z., Itzhaki, A., Mordechovich, D., Schneiderman, R. S., Wasserman, Y., Ryffel, B., Goldsher, D., & Palti, Y. (2009). Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clinical and Experimental Metastasis, 26(7), 633-640.

Kirson, E. D., Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger, Y. Palu. (2004). Disruption of cancer cell replication by alternating electric fields. Cancer Research, 64, 3288-3295.

Kroemer, G., Galluzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev, 87, 9-16.

Kuwahara, T., Hazama, S., Suzuki, N., Yoshida, S., Tomochika, S., Nakagami, Y., Matsui, H., Shindo, Y., Kanekiyo, S., Tokumitsu, Y., Iida, M., Tsunedomi, R., Takeda, S., Yoshino, S., Okayama, N., Suehiro, Y., Yamasaki, T., Fujita, T., Kawakami, Y., Nagano, H. (2019). Intratumoural-infiltrating CD4 + and FOXP3 + T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. British Journal of Cancer, 121(8), 659-665.

Lee, S. Y., Ju, M. K., Jeon, H. M., Jeong, E. K., Lee, Y. J., Kim, C. H., & Kang, H. S. (2018). Regulation of tumor progression by programmed necrosis. Oxidative Medicine and Cellular Longevity, 1-28.

Lin, F., Baldessari, F., Gyenge, C. C., Sato, T., Chambers, R. D., Santiago, J. G., & Butcher, E. C. (2008). Lymphocyte electrotaxis in vitro and in vivo. The Journal of Immunology, 181(4), 2465-2471.

Macchetti, A. H., Marana, H. R. C., Silva, J. S., De Andrade, J. M., Ribeiro-Silva, A., & Bighetti, S. (2006). Tumor-infiltrating CD4+ T lymphocytes in early breast cancer reflect lymph node involvement. Clinics, 61(3), 203-208.

Madyaningtias, E. P., Sampepajung, D., & Faruk, M. (2021). Epidemiological and clinicopathological characteristics of breast cancer in Eastern Indonesia. Journal of Medical & Allied Sciences, 11(1), 27-32.

Man, Y.G. (2007). Focal degeneration of aged or injured myoepithelial cells and the resultant auto-immunoreactions are trigger factors for breast tumor invasion. Med Hypotheses, 69(6), 1340-57.

Margot and Bonnie, (2012). Methods in mammary gland biology and breast cancer research. Springer. New York. 57.

Martínez-Lostao, L., Anel, A., & Pardo, J. (2015). How do cytotoxic lymphocytes kill cancer cells? Clinical Cancer Research, 21(22), 5047-5056.

Moncayo, R., Romo-Bucheli, D., & Romero, E. (2015). A grading strategy for nuclear pleomorphism in histopathological breast cancer images using a bag of features (bof). In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 20th Iberoamerican Congress, CIARP 2015, 20. 75-82. Springer International Publishing.

Mujib, S.A., Alamsyah, F., dan Taruno, W.P. (2017). Cell death and induced p53 expression in oral cancer, hela, and bone marrow mesenchyme cells under the exposure to noncontact electric fields. Integr Med Int, 4, 161-170.

Murphy, K., and Weaver, C. (2017). Janeway’s Immunobiology 9th edition. Garland Science. Taylor & Francis Group.New York. 9, 368-372.

Nurgali, K., Jagoe, R. T., & Abalo, R. (2018). Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Frontiers in Pharmacologyl, 9(3), 1-3.

Nurhidayat et al. (2022). Evaluation of static electric field exposure on histopathological structure and function of kidney and liver in dmba induced rat (Rattus norvegicus Berkenhout, 1769). Malaysian Journal of Fundamental and Applied Sciences, 18, 703-713.

Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kühnel, F., & Woller, N. (2018). CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cellular and Molecular Life Sciences, 75(4), 689-713.

Pandey, P. R., Saidou, J., & Watabe, K. (2011). Role of myoepithelial cells in breast tumor progression. Frontiers in Bioscience (Landmark edition), 15, 226-236.

Pardo, J., Bosque, A., Bosque, A., Bosque, A., Müllbacher, A., Anel, A., & Simon, M. M. (2004). Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. The Journal of Cell Biology, 167(3), 457-468.

Pardo, J., Aguilo, J. I., Anel, A., Martin, P., Joeckel, L., Borner, C., Wallich, R., Müllbacher, A., Froelich, C. J., & Simon, M. M. (2009). The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes and Infection, 11(4), 452-459.

Payne, S. L., Levin, M., & Oudin, M. J. (2019). Bioelectric control of metastasis in solid tumors. Bioelectricity, 1(3), 114-130.

Pearce, A., Haas, M., Viney, R., Pearson, S. A., Haywood, P., Brown, C., & Ward, R. (2017). Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS ONE, 12(10), 1-12.

Pratiwi, R., Antara, N. Y., Fadliansyah, L. G. et al. (2020). CCL2 and IL18 expressions may associate with the anti-proliferative effect of non contact electro capacitive cancer therapy in vivo. F1000Research, 8, 1770.

Pu, X., Storr, S. J., Zhang, Y., Rakha, E. A., Green, A. R., Ellis, I. O., and Martin, S. G. (2017). Caspase-3 and caspase-8 expression in breast cancer: Caspase-3 is associated with survival. Apoptosis, 22, 357-368.

Pugalendhi, P. and Manoharan, S. (2010). Chemopreventive potential of genistein and daidzein in combination during 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary carcinogenesis in sprague-dawley rats. Pakistan Journal of Biological Sciences, 13(6), 279-286.

Ramirez, L. Y., Huestis, S. E., Yap, T. Y., Zyzanski, S., Drotar, D., & Kodish, E. (2009). Potential chemotherapy side effects: What do oncologists tell parents? Pediatric Blood and Cancer, 52(4), 497-502.

Rathore, A. S., Kumar, S., Konwar, R., Makker, A., Negi, M. P. S., & Goel, M. M. (2014). CD3+, CD4+ & CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian Journal of Medical Research, 140(9), 361-369.

Rock, K. L., & Kono, H. (2008). The inflammatory response to cell death. Annual Review of Pathology: Mechanisms of Disease, 3, 99-126.

Russo, J., & Russo, I. H. (2000). Atlas and histologic classification of tumors of the rat mammary gland. Journal of Mammary Gland Biology and Neoplasia, 5(2), 187-200.

Sawe, R. T., Kerper, M., Badve, S., Li, J., Sandoval-Cooper, M., Xie, J., Shi, Z., Patel, K., Chumba, D., Ofulla, A., Prosperi, J., Taylor, K., Stack, M. S., Mining, S., & Littlepage, L. E. (2016). Aggressive breast cancer in western Kenya has early onset, high proliferation, and immune cell infiltration. BMC Cancer, 16(1), 1-16.

Setiawan, D. (2015). The effect of chemotherapy in cancer patient to anxiety. Jurnal Majority, 4(4), 94-99.

Smoot, B., Wampler, M., & Topp, K. S. (2009). Breast cancer treatments and complications: Implications for rehabilitation. Rehabilitation Oncology, 27(3), 16-26.

Stratford, J. P., Edwards, C. L., Ghanshyam, M. J., Malyshev, D., Delise, M. A., Hayashi, Y., & Asally, M. (2019). Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. Proceedings of the National Academy of Sciences, 116(19), 9552-9557.

Stupp, R., Taillibert, S., Kanner, A., Kesari, S., Toms, S. A., Barnett, G. H., Fink, K. L., Silvani, A., Lieberman, F. S., Zhu, J.-J., Taylor, L. P., Honnorat, J., Hottinger, A., Chen, T., Tran, D. D., Kim, C., Hirte, H. W., Hegi, M. E., Palti, Y., & Ram, Z. (2015). Tumor treating fields (TTFields): A novel treatment modality added to standard chemo- and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. Journal of Clinical Oncology, 33(15), 2000-2000.

Su, Z., Yang, Z., Xu, Y., Chen, Y., Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 14(48), 1-14.

Su, S., Liao, J., Liu, J., Huang, D., He, C., Chen, F., Yang, L. B., Wu, W., Chen, J., Lin, L., Zeng, Y., Ouyang, N., Cui, X., Yao, H., Su, F., Huang, J. D., Lieberman, J., Liu, Q., & Song, E. (2017). Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Research, 27(4), 461-482.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics, 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.

Tengku Din, T. A. D. A. A., Abdul Jalal, M. I., Seeni, A., Shamsuddin, S., Jaafar, H. (2018). The differential roles of caspase family members in mediating pf4-induced breast cancer apoptosis. Malays J Pathol, 40(3), 303-312.

Tomes, L., Emberley, E., Niu, Y., Troup, S., Pastorek, J., Strange, K., Harris, A., & Watson, P. H. (2003). Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Research and Treatment, 81(1), 61-69.

World Health Organization. 2021. Breast cancer. World Health Organization. Retrieved from

Ziai, J., Gilbert, H. N., Foreman, O., Eastham-Anderson, J., Chu, F., Huseni, M., & Kim, J. M. (2018). CD8+ T cell infiltration in breast and colon cancer: A histologic and statistical analysis. PLoS ONE, 13(1), 1-18.