Fekete-Szegö Inequality for a Subclass of Bi-univalent Functions by Applying Sălăgean q-Differential Operator
DOI:
https://doi.org/10.11113/mjfas.v19n6.3039Keywords:
Fekete-Szegö Inequality, Bi-univalent Functions, Sălăgean q-Differential OperatorAbstract
Throughout this study, we propose a new subclass of bi-univalent functions by applying Sălăgean q-differential operator and denoted as LΣ_q^k (λ,ϕ). Further, we acquired the values of the initial coefficients |a_2 | and |a_3 | for functions f∈LΣ_q^k (λ,ϕ) which yield to this study’s preliminary result. Subsequently, the preliminary result was applied to obtain the upper bound of Fekete-Szegö inequality, |a_3-ρa_2^2 |, for functions f∈LΣ_q^k (λ,ϕ).
References
-[1] Ali, R. M., Lee, S. K., Ravichandran V. & Supramaniam S. (2011). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351.
Aouf, M. K., Mostafa, A. O. & Morsy, R. E. E. L. (2020). Coefficient bounds for general class of bi-univalent functions of complex order associated with q- Sălăgean operator and Chebyshev polynomials. Electronic Journal of Mathematical Analysis and Applications, 8(2), 251-260.
Çağlar, M. & Deniz, E. (2017). Initial Coefficients for a subclass of bi-univalent functions defined by Salagean differential operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 85-91.
Choo, C. P. & Janteng, A. (2013). Estimate on the second hankel functional for a subclass of close-to-convex functions with respect to symmetric points. International Journal of Mathematical Analysis, 7(13-16), 781-788
Frasin, B. A. & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Appl. Math. Lett., 24, 1569-1573.
Govindaraj, M. & Sivasubramanian, S. (2017). On a class of analytic function related to conic domains involving q−calculus. Analysis Math., 43(3), 475-487.
Halim, S. A. (1992). On a class of analytic functions involving the Salagean Differential Operator. Tamkang Journal of Mathematics, 23(1), 51-58.
Halim, S. A., Janteng, A. & Darus, M. (2006). Classes with negative coefficients and starlike with respect to other points II. Tamkang Journal of Mathematics, 37(4), 345-354.
Huey, K. S., Janteng, A., Janteng, J. & Hern, A. L. P. (2023). Second Hankel determinant of bi-univalent functions. Malaysian Journal of Fundamental and Applied Sciences, 19(2), 269-279.
Hussain, S., Khan, S., Zaighum, M. A. & Darus, M. (2017). Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2(4), 622-634.
Ibrahim, R. W. & Darus M. (2019). Subordination inequalities of a new Salagean-difference operator. International Journal of Mathematics, 14(3), 573-582.
Jackson, F. H. (1908). On q-functions and a certain difference operator. Transactions of the Royal Society of Edinburgh, 46(2), 253-281.
Janteng, A. & Halim, S. A. (2009). A subclass of quasi-convex functions with respect to symmetric points, Applied Mathematical Sciences, 3(12), 551-556.
Li, X. F. & Wang, A. P. (2012). Two new subclasses of bi-univalent functions. Int. Math. Forum, 7, 1495-1504.
Liew, A. P. H., Janteng, A. & Omar, R. (2020). Hankel determinant H_2 (3) for certain subclasses of univalent functions. Mathematics and Statistics, 8(5), 566-569.
Murugusundaramoorthy, G. & Vijaya K. (2017). Subclasses of bi-univalent functions defined by Sălăgean type q-difference operator. arXiv:1710.00143v1.
Murugusundaramoorthy, G., Yalçin, S. & Altınkaya, Ş. (2019). Fekete–Szegö inequalities for subclass of bi-univalent functions associated with Sălăgean type q-difference operator. Afrika Matematika, 30, 979-987.
Mustafa, N., Murugusundaramoorthy, G. & Janani, T. (2018). Second Hankel determinant for a certain subclass of bi-univalent functions. Mediterranean Journal of Mathematics, 15(3), 1-17.
Noonan, J. W. & Thomas, D. K. (1976). On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc., 223, 337-346.
Orhan, H., Magesh, N., Balaji, V. K. (2016). Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions. Afrika Matematika, 27(5-6), 889-897.
Pommerenke, C. (1975). Univalent functions. Vandenhoeck and Ruprecht, Göttingen.
Sălăgean, G. S. (1983). Subclasses of univalent functions, Complex analysis – Proceedings 5th Romanian-Finnish Seminar, Busharest, 1013, 362-372.
Srivastava, H. M. & Attiya, A. A. (2004). Some subordination results associated with certain subclass of analytic functions. Appl. Math. Sci., 5(4), 1-6.
Srivastava, H. M., Mishra, A. K. & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23(10), 1188-1192.
Tang, H., Srivastava, H. M., Sivasubramanian, S. & Gurusamy, P. (2016). The Fekete–Szegö functional problems for some subclasses of m–fold symmetric bi–univalent functions. Journal of Mathematical Inequalities, 10(4), 1063-1092.
Zaprawa, P. (2014). On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169-178.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dayana Chang, Aini Janteng
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.