Improved Performance of Optical Fiber Core: Role of Plasmonic Metals Activation
DOI:
https://doi.org/10.11113/mjfas.v19n5.3032Keywords:
Attenuation coefficient, plasmonic metals, propagation constant, refractive index, dispersion relation, modesAbstract
Optical fiber core with customized characteristics became demanding for diverse high performance applications. Based on this idea, the optical fiber core was activated using various plasmonic metals (beryllium, chromium, and nickel) to improve its refractive index, sensitivity and bandwidth. The influence of various wavelengths and core radii on three modes (LP01, LP11 and LP21) propagation was determined using finite element analysis (FEM). The COMSOL MULTIPHYSICS software was used for the computation. The fiber core radii of the plasmonic metal activated and wavelengths were varied to control the forward and backward energy propagation as well as the modal dispersion relation. Quantities like effective refractive index, attenuation, propagation constant and diffusion coefficient for the three modes as a function of wavelengths and fiber core radii were calculated, which showed maximum values at shorter wavelengths. Irrespective of the type of metal activation in the fiber core, the refractive index of LP01 mode for the core of radius 200 nm was more significantly affected compared to others. Regardless of different metals inclusion, the dispersion relation (refractive index versus frequency) for all modes was strongly positive, showing increasing values for radius in the order of 200, 400, 600 nm. Plasmonic metals Cr and Ni displayed best effect, while Be required high values of V to get LP01 in a narrow range and other modes appeared in a larger range than V. Present results may be useful for the development of high performance optical fiber core.
References
Case, K. M. (1959). Plasma oscillations. Annals of physics, 7(3), 349-364.
Salim, A. A., Bakhtiar, H., Shamsudin, M. S., Aziz, M. S., Johari, A. R., & Ghoshal, S. K. (2022). Performance evaluation of rose bengal dye-decorated plasmonic gold nanoparticles-coated fiber-optic humidity sensor: A mechanism for improved sensing. Sensors and Actuators A: Physical, 347, 113943.
Polavarapu, L., Pérez-Juste, J., Xu, Q. H., & Liz-Marzán, L. M. (2014). Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. Journal of Materials Chemistry C, 2(36), 7460-7476.
Salim, A. A., Bakhtiar, H., Krishnan, G., & Ghoshal, S. K. (2021). Nanosecond pulse laser-induced fabrication of gold and silver-integrated cinnamon shell structure: Tunable fluorescence dynamics and morphology. Optics & Laser Technology, 138, 106834.
Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics reports, 408(3-4), 131-314.
Salim, A. A., Ghoshal, S. K., Suan, L. P., Bidin, N., Hamzah, K., Duralim, M., & Bakhtiar, H. (2018). Liquid media regulated growth of cinnamon nanoparticles: Absorption and emission traits. Malaysian Journal of Fundamental and Applied Sciences, 14(3-1), 447-449.
Bertolotti, M., Sibilia, C., & Guzman, A. M. (2017). Evanescent waves in optics: An introduction to plasmonics (Vol. 206). Cham: Springer.
Zeng, S., Yong, K. T., Roy, I., Dinh, X. Q., Yu, X., & Luan, F. (2011). A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6(3), 491-506.
McEuen, P., & Kittel, C. (2005). Introduction to solid state physics. Eight Edition. John Wiley & Sons, Inc.
Salim, A. A., Ghoshal, S. K., & Bakhtiar, H. (2021). Growth mechanism and optical characteristics of Nd: YAG laser ablated amorphous cinnamon nanoparticles produced in ethanol: Influence of accumulative pulse irradiation time variation. Photonics and Nanostructures-Fundamentals and Applications, 43, 100889.
Li, M., Cushing, S. K., & Wu, N. (2015). Plasmon-enhanced optical sensors: A review. Analyst, 140(2), 386-406.
Hämäläinen, J., Ritala, M., & Leskelä, M. (2014). Atomic layer deposition of noble metals and their oxides. Chemistry of Materials, 26(1), 786-801.
Capek, I. (2015). DNA engineered noble metal nanoparticles: Fundamentals and state-of-the-art of nanobiotechnology. John Wiley & Sons.
Haque, E., Hossain, M. A., Ahmed, F., & Namihira, Y. (2018). Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sensors Journal, 18(20), 8287-8293.
Erdmanis, M., Viegas, D., Hautakorpi, M., Novotny, S., Santos, J. L., & Ludvigsen, H. (2011). Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber. Optics Express, 19(15), 13980-13988.
Tuan Guo, Álvaro González-Vila, Médéric Loyez, Christophe Caucheteur. (2017). Plasmonic optical fiber-grating immunosensing: A Review. Sensors, 17, 2732.
Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 12(3), 213-220.
Taylor, H. (1984). Bending effects in optical fibers. Journal of Lightwave Technology, 2(5), 617-628.
Gupta, B. D., Dodeja, H., & Tomar, A. K. (1996). Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Optical and Quantum Electronics, 28, 1629-1639.
Salman, M. H., Muhammad, H. K., & Yasser, H. A. (2020). Effects of holes radius on plasmonic photonic crystal fiber sensor with internal gold layer. Periodicals of Engineering and Natural Sciences, 8(3), 1288-1296.
Chen, N., Chang, M., Zhang, X., Zhou, J., Lu, X., & Zhuang, S. (2019). Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications. Nanomaterials, 9(11), 1587.
Hussein Taqi John, Imad Kamil Zayer, & Ali Abed Jaber. (2023). The effect of nickel on the sensitivity of plasmonic photonic crystal fiber sensor. Eurasian Journal of Physics,Chemistry and Mathematics, 14, 28-42.
Paul, A. K., Sarkar, A. K., Rahman, A. B. S., & Khaleque, A. (2018). Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sensors Journal, 18(14), 5761-5769.
Zeng, S., Yong, K. T., Roy, I., Dinh, X. Q., Yu, X., & Luan, F. (2011). A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6, 491-506.
Al Mahfuz, M., Mollah, M. A., Momota, M. R., Paul, A. K., Masud, A., Akter, S., & Hasan, M. R. (2019). Highly sensitive photonic crystal fiber plasmonic biosensor: Design and analysis. Optical Materials, 90, 315-321.
Das, S., & Singh, V. K. (2020). Refractive index sensor based on selectively liquid infiltrated birefringent photonic crystal fiber. Optik, 201, 163489.
Arumugam, M. (2001). Optical fiber communication—an overview. Pramana, 57(5), 849-869.
Muhammad, H. K., Salman, M. H., & Yasser, H. A. (2020). New plasmonic photonic crystal fiber sensor based on core size. NeuroQuantology, 18(9), 45.
Agrawal, G. P. (2000). Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century (pp. 195-211). Berlin, Heidelberg: Springer Berlin Heidelberg.
Yang, X., Lu, Y., Liu, B., & Yao, J. (2017). Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics, 12(2), 489-496.
Hu, D. J. J., & Ho, H. P. (2017). Recent advances in plasmonic photonic crystal fibers: Design, fabrication and applications. Advances in Optics and Photonics, 9(2), 257-314.
Salim, A. A., Ghoshal, S. K., Shamsudin, M. S., Rosli, M. I., Aziz, M. S., Harun, S. W., ... & Bakhtiar, H. (2021). Absorption, fluorescence and sensing quality of Rose Bengal dye-encapsulated cinnamon nanoparticles. Sensors and Actuators A: Physical, 332, 113055.
John, H. T. (2021, December). Influence metal berylliumof the optical fibercoreon plasmonic properties. Journal of Physics: Conference Series (Vol. 2114, No. 1, p. 012008). IOP Publishing.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Hussein Taqi John, Oday Jawad Kadhim, Imad Kamil Zayer, M S Aziz, A A Salim
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.