Highly Efficient Synthesis of Complex bis-2,4-dimethoxy-1,3,5-triazapentadienemetal(II) (metal = Cu, Ni) with Hirshfeld Surface Analysis

Authors

  • I Wayan Dasna ᵃDepartment of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145; ᵇCentre of Advanced Material for Renewable Energy, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5 Malang, Jawa Timur, Indonesia 65145
  • Husni Wahyu Wijaya ᵃDepartment of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145; ᵇCentre of Advanced Material for Renewable Energy, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5 Malang, Jawa Timur, Indonesia 65145
  • Faaza’izzahaq Setta Putra Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Hakam Abdulloh Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Ahmad Taufiq ᵃDepartment of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145; ᶜDepartment of Physics, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145

DOI:

https://doi.org/10.11113/mjfas.v19n3.3018

Keywords:

Copper(II) complex, nickel(II) complex, 2,4-methoxy-1,3,5-triazapentadiene ligand, solvothermal, Hirshfeld surface analysis

Abstract

The synthesis of copper(II) or Nickel(II) complex with bis-2,4-dimethoxy-1,3,5-triazapentadiene ligand has been reported using a direct reaction and reflux method. These methods take a relatively long synthesis time, so it is necessary to develop a faster synthesis method. This study reports a solvothermal method to synthesize bis-2,4-dimethoxy-1,3,5-triazapentadiene copper(II) and nickel(II) as in situ with sodium dicyanamide and methanol that produces single crystals in a day and two days respectively. XRD analysis of both single crystals from solvothermal results showed a monoclinic crystal lattice and a P21/n space group which was not different from previous studies. The Hirshfeld analysis indicates that the interactions with the most prevelant contributions in both of complexes are H—H, O—H/H—O, and N—H/N—H.

References

M. N. Kopylovich and A. J. L. Pombeiro. (2011). Coordination chemistry of 1,3,5-triazapentadienes. Coord. Chem. Rev.,. 255(1-2), 339-355. Doi: 10.1016/j.ccr.2010.09.012.

O. V. Nesterova, M. N. Kopylovich, and D. S. Nesterov. (2019). A comparative study of the catalytic behaviour of alkoxy-1,3,5-triazapentadiene copper(II) complexes in cyclohexane oxidation. Inorganics, 7(7), 1-19. Doi: 10.3390/INORGANICS7070082.

E. V. Andrusenko, E. V. Kabin, A. S. Novikov, N. A. Bokach, G. L. Starova, and V. Y. Kukushkin. (2016). Metal-mediated generation of triazapentadienate-terminated di- and trinuclear μ2-pyrazolate NiII species and control of their nuclearity. New J. Chem., 41(1), 316-325. Doi: 10.1039/c6nj02962k.

N. Q. Shixaliyev et al. (2013). Zinc (II)-1, 3, 5-triazapentadienate complex as effective catalyst in Henry reaction. Catal. Today, 217, 76-79.

I. I. Eliseev et al. (2014). Phosphorescent PtII systems featuring both 2,2′-dipyridylamine and 1,3,5-triazapentadiene ligands. Eur. J. Inorg. Chem., 25, 4101-4108. Doi: 10.1002/ejic.201402364.

N. Heße, R. Fröhlich, I. Humelnicu, and E. U. Würthwein. (2005). 1,3,5-Triazapentadienes as chelating ligands: 1,2,4-triphenyl-1,3,5-triazapentadiene complexes of cobalt(II), nickel(II), palladium(II), copper(II) and zinc(II). Eur. J. Inorg. Chem., 11, 2189-2197. Doi: 10.1002/ejic.200401010.

A. P. C. Ribeiro, Y. Y. Karabach, L. M. Martins, A. G. Mahmoud, M. F. C. G. da Silva, and A. J. L. Pombeiro. (2016). Nickel (II)-2-amino-4-alkoxy-1, 3, 5-triazapentadienate complexes as catalysts for Heck and Henry reactions,” RSC Adv., 6(35), 29159-29163.

D. Feld, O. Wir, D. Lage, K. Metall-, and U. Leipzig. (1907). Mer. 2950-2958.

P. J. Figiel, M. N. Kopylovich, J. Lasri, M. F. C. G. Da Silva, J. J. R. F. Da Silva, and A. J. L. Pombeiro. (2010). Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chem. Commun., 46(16), 2766-2768. Doi: 10.1039/b922738e.

R. Bocˇa, M. Hvastijova, J. Kožíšek, and M. Valko. (1996). Activation of the carbon β-Site in nonlinear pseudohalides by coordination. Crystal, molecular, and electronic structure of a Bis {bis (methoxycarbimido) aminato} copper (II) Complex. Inorg. Chem., 35(16), 4794-4797.

M. N. Kopylovich, Y. Y. Karabach, M. F. C. Guedes Da Silva, P. J. Figiel, J. Lasri, and A. J. L. Pombeiro. (2012). Alkoxy-1,3,5-triazapentadien(e/ato) copper(II) complexes: Template formation and applications for the preparation of pyrimidines and as catalysts for oxidation of alcohols to carbonyl products. Chem. - A Eur. J., 18(3), 899-914. Doi: 10.1002/chem.201101688.

E. V. Andrusenko, E. V. Kabin, A. S. Novikov, N. A. Bokach, G. L. Starova, and V. Y. Kukushkin. (2016). Metal-mediated generation of triazapentadienate-terminated di- and trinuclear μ2-pyrazolate NiII species and control of their nuclearity. New J. Chem., 41(1), 316-325. Doi: 10.1039/c6nj02962k.

X.-H. Zhao, X.-D. Chen, and M. Du. (2006). Di-μ-methoxo-bis {[bis (methoxycarbimido) aminato] copper (II)}. Acta Crystallogr. Sect. E Struct. Reports Online, 62(12), m3580–m3581.

J. H. Kim, S.-G. Roh, and J. H. Jeong. (2000). Di-μ-methoxo-bis({ N , N ′-bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine-κ 3 N }copper(II)) bis(hexafluorophosphate). Acta Crystallogr. Sect. C Cryst. Struct. Commun., 56(12), e543-e544. Doi: 10.1107/S0108270100014815.

R. Boča, M. Hvastijová, J. Kožíšek, and M. Valko. (1996). Activation of the carbon β-Site in nonlinear pseudohalides by Ccoordination. Crystal, molecular, and electronic structure of a Bis{bis(methoxycarbimido)aminato}copper(II) complex. Inorg. Chem., 35(16), 4794-4797. Doi: 10.1021/ic950422n.

F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. (1987). Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2, 12. Doi: 10.1039/P298700000S1.

O. F. Stockholx, D. O. F Analytical Chemistry Axd Biochemistry, B. F. Karl-erik A L K, E. I. Y A N O V A, B. R. Jork O O S, and A. N. D Tore Vlxsgard. Inorganic chemistry costributios from the Department of Theoretical Physics University Electron Paramagnetic Resonance Study of Copper(I1) Dimethylglyoxime. Theoretical and Experimental Study of the Effect of Axial Ligands.

M. N. Kopylovich, J. Lasri, M. F. C. Guedes Da Silva, and A. J. L. Pombeiro. (2011). PdII-promoted single-pot template transformations of benzonitriles, cyanoguanidine and sodium dicyanamide with the formation of symmetrical and asymmetrical (1,3,5-Triazapentadienate)palladium(II) complexes. Eur. J. Inorg. Chem., 3, 377-383. Doi: 10.1002/ejic.201000898.

F. N. Naghiyev et al. (2022). Crystal structure and Hirshfeld surface analysis of 3-benzoyl-6-(1,3-dioxo-1-phenylbutan-2-yl)-2-hydroxy-2-methyl-4-phenylcyclohexane-1,1-dicarbonitrile. Acta Crystallogr. Sect. E Crystallogr. Commun., 78(Pt 6), 568-573. Doi: 10.1107/S2056989022004777.

Downloads

Published

26-05-2023

Issue

Section

Article