Positioning Optimization of UAV (Drones) Base Station in Communication Networks

Authors

  • Mustafa Qahtan Alsudani ᵃComputer Techniques Engineering Department, Faculty of Information Technology, Imam Jaafar Al-Sadiq University, Baghdad, Iraq; ᵇJabir Ibn Hayyan Medical University
  • Mushtaq Talb Tally Ministry of Education Directorate of Education in Babil, Iraq
  • Israa Fayez Yousif ᵃComputer Techniques Engineering Department, Faculty of Information Technology, Imam Jaafar Al-Sadiq University, Baghdad, Iraq; ᵈDepartment of Materials Engineering, University of Kufa, Najaf, Iraq
  • Ali Abdullhussein Waad Computer Techniques Engineering Department, Faculty of Information Technology, Imam Jaafar Al-Sadiq University, Baghdad, Iraq
  • Safa Riyadh Waheeda Computer Techniques Engineering Department, Faculty of Information Technology, Imam Jaafar Al-Sadiq University, Baghdad, Iraq
  • Myasar Mundher Adnan Islamic University, Najaf, Iraq

DOI:

https://doi.org/10.11113/mjfas.v19n3.2993

Keywords:

Drones, Communication Networks, Positioning Optimization, UAV

Abstract

Unmanned aerial vehicles (UAV) and cellular networks are growing closer to being integrated in the realm of wireless communications, which will improve service quality even further. In this study, we investigate a wireless communication system in which two types of base stations—in the air and on the ground—serve separate groups of users. We analyze the effect of the aerial base station (ABS) height and transmit power on the system's downlink and uplink data rates while accounting for the reciprocal interference between the Aerial and terrestrial communication lines. The findings demonstrate that in many cases the best ABS altitude and transmit Power are either the highest or lowest values attainable. The distance between the ABS, the ABS user (AU), and the terrestrial base station user, among other factors, may affect how well they all communicate (TU). In this article we will discuss the following topics: unmanned aerial vehicle (UAV), terrestrial base station (BTS), transmit power optimization (TPO), interference (I), downlink (DL), and uplink (UL).

References

Lyu, J., Zeng, Y., Zhang, R., & Lim, T. J. (2016). Placement optimization of UAV-mounted mobile base stations. IEEE Communications Letters, 21(3), 604-607.

Klaine, P. V., Nadas, J. P., Souza, R. D., & Imran, M. A. (2018). Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cognitive Computation, 10(5), 790-804.

de Paula Parisotto, R., Klaine, P. V., Nadas, J. P., Souza, R. D., Brante, G., & Imran, M. A. (2019, August). Drone base station positioning and power allocation using reinforcement learning. 2019 16th International Symposium on Wireless Communication Systems (ISWCS) (pp. 213-217). IEEE.

Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016, September). On the number and 3D placement of drone base stations in wireless cellular networks. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1-6). IEEE.

Gapeyenko, M., Bor-Yaliniz, I., Andreev, S., Yanikomeroglu, H., & Koucheryavy, Y. (2018, May). Effects of blockage in deploying mmWave drone base stations for 5G networks and beyond. 2018 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.

Kadhim, K. A., Adnan, M. M., Waheed, S. R., & Alkhayyat, A. (2021). Automated high-security license plate recognition system. Materials Today: Proceedings.‏

Waheed, S. R., Suaib, N. M., Rahim, M. S. M., Adnan, M. M., & Salim, A. A. (2021, April). Deep learning algorithms-based object detection and localization revisited. Journal of Physics: Conference Series, 1892(1), 012001. IOP Publishing.‏

Salim, A. A., Ghoshal, S. K., Shamsudin, M. S., Rosli, M. I., Aziz, M. S., Harun, S. W., ... & Bakhtiar, H. (2021). Absorption, fluorescence and sensing quality of Rose Bengal dye-encapsulated cinnamon nanoparticles. Sensors and Actuators A: Physical, 332, 113055.

Salim, A. A., Bidin, N., Bakhtiar, H., Ghoshal, S. K., Al Azawi, M., & Krishnan, G. (2018, May). Optical and structure characterization of cinnamon nanoparticles synthesized by pulse laser ablation in liquid (PLAL). Journal of Physics: Conference Series, 1027(1), 012002. IOP Publishing.

Salim, A. A., Bakhtiar, H., & Ghoshal, S. K. (2021). Improved fluorescence quantum yield of nanosecond pulse laser ablation wavelength controlled cinnamon nanostructures grown in ethylene glycol medium. Optik, 244, 167575.

Adnan, M. M., Rahim, M. S. M., Al-Jawaheri, K., Ali, M. H., Waheed, S. R., & Radie, A. H. (2020, September). A survey and analysis on image annotation. 2020 3rd International Conference on Engineering Technology and its Applications (IICETA) (pp. 203-208). IEEE.‏

Chandrasekharan, S., Gomez, K., Al-Hourani, A., Kandeepan, S., Rasheed, T., Goratti, L., ... & Allsopp, S. (2016). Designing and implementing future aerial communication networks. IEEE Communications Magazine, 54(5), 26-34.

Fotouhi, A., Ding, M., & Hassan, M. (2017, June). Dynamic base station repositioning to improve spectral efficiency of drone small cells. 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1-9). IEEE.

Li, X. (2018, July). Deployment of drone base stations for cellular communication without apriori user distribution information. 2018 37th Chinese Control Conference (CCC) (pp. 7274-7281). IEEE.

Salim, A. A., Ghoshal, S. K., & Bakhtiar, H. (2021). Growth mechanism and optical characteristics of Nd: YAG laser ablated amorphous cinnamon nanoparticles produced in ethanol: Influence of accumulative pulse irradiation time variation. Photonics and Nanostructures-Fundamentals and Applications, 43, 100889.

Salim, A. A., Ghoshal, S. K., Danmallam, I. M., Sazali, E. S., Krishnan, G., Aziz, M. S., & Bakhtiar, H. (2021, April). Distinct optical response of colloidal gold-cinnamon nanocomposites: Role of pH sensitization. Journal of Physics: Conference Series, 1892(1), 012039. IOP Publishing.

Bor-Yaliniz, I., Szyszkowicz, S. S., & Yanikomeroglu, H. (2017). Environment-aware drone-base-station placements in modern metropolitans. IEEE Wireless Communications Letters, 7(3), 372-375.

Kishk, M., Bader, A., & Alouini, M. S. (2020). Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff. IEEE Vehicular Technology Magazine, 15(4), 103-111.

Fotouhi, A., Ding, M., & Hassan, M. (2018). Flying drone base stations for macro hotspots. IEEE Access, 6, 19530-19539.

Salim, A. A., Bidin, N., & Islam, S. (2017). Low power CO2 laser modified iron/nickel alloyed pure aluminum surface: Evaluation of structural and mechanical properties. Surface and Coatings Technology, 315, 24-31.

Salim, A. A., Ghoshal, S. K., Bakhtiar, H., Krishnan, G., & Sapingi, H. H. J. (2020, April). Pulse laser ablated growth of Au-Ag nanocolloids: Basic insight on physiochemical attributes. Journal of Physics: Conference Series, 1484(1), 012011. IOP Publishing.

Salim, A. A., Bakhtiar, H., Shamsudin, M. S., Aziz, M. S., Johari, A. R., & Ghoshal, S. K. (2022). Performance evaluation of rose bengal dye-decorated plasmonic gold nanoparticles-coated fiber-optic humidity sensor: A mechanism for improved sensing. Sensors and Actuators: A. Physical, 347, 113943.

Huang, H., Savkin, A. V., Ding, M., & Kaafar, M. A. (2019). Optimized deployment of drone base station to improve user experience in cellular networks. Journal of Network and Computer Applications, 144, 49-58.

Downloads

Published

26-05-2023

Issue

Section

Article