Biosynthesis and Characterization of Silver Nanoparticles using Single Garlic Callus Extract (Allium sativum L.)


  • Yanti Puspita Sari Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Jl. Barong Tongkok No. 4 Gn. Kelua, Samarinda, East Kalimantan 75123, Indonesia
  • Amanda Qory Suchi Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Jl. Barong Tongkok No. 4 Gn. Kelua, Samarinda, East Kalimantan 75123, Indonesia
  • Rudy Agung Nugroho Animal Physiology, Development, and Molecular Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Jl. Barong Tongkok, Gunung Kelua Campus, Samarinda, East Kalimantan 75123, Indonesia



Silver nanoparticle, biosynthesis, stability, garlic, callus


Nanotechnology is a relatively new and innovative field with huge potential for application in the food and drug industries. Due to their excellent physicochemical and biological properties, silver nanoparticles (AgNPs) are often utilized in various applications and have been the subject of substantial research. AgNP synthesis using plant extracts has recently gained popularity due to their environmental friendliness, affordability, and potent functionality in several applications. The present study evaluated the biosynthesis, stability, and characteristics of AgNPs using a single garlic callus extract (Allium sativum L.) AgNPs were synthesized using single garlic callus extract (AgNPs-As) by adding 1 mM AgNO3 to ethanolic extracts of single garlic callus at a 1:9 ratio, incubating at 35 °C for 48 h, and observing the colloidal color change. Spectrophotometry (absorption at 200–800 nm), SEM, EDX, PSA, FTIR, and XRD were used for their characterization. The present study showed a colloidal color change to brown, indicating the formation of AgNPs-As. The characterization of AgNPs-As using SEM, EDX, PSA, and XRD revealed a spherical morphology with an average size of 201.9 nm. Several active compounds were identified from different peaks, indicating the presence of several types of biological functional groups, such as alkaloids, terpenoids, carbonyl groups, esters, halides, and alcohol were also confirmed using FTIR spectroscopy.


Bouqellah, N. A., Mohamed, M. M., and Ibrahim, Y. (2019). Synthesis of eco-friendly silver nanoparticles using Allium sp. and their antimicrobial potential on selected vaginal bacteria. Saudi Journal of Biological Sciences, 26(7), 1789-1794.

Gupta, D. and Chauhan, P. (2017). Green synthesis of silver nanoparticles involving extract of plants of different taxonomic groups. J Nanomed Res., 5(2), 00110.

Nadeem, M., Tungmunnithum, D., Hano, C., Abbasi, B. H., Hashmi, S. S., Ahmad, W., and Zahir, A. (2018). The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews, 11(4), 492-502.

Saputra, I. S., Suhartati, S., Yulizar, Y., and Sudirman, S. (2020). Synthesis and characterization of gold nanoparticles (AuNPs) by utilizing bioactive compound of imperata cylndrica L. Jurnal Kimia Terapan Indonesia, 22(1), 1-7.

Osibe, D. A., Chiejina, N. V., Ogawa, K., and Aoyagi, H. (2018). Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1266-1273.

Jomini, S., Clivot, H., Bauda, P., and Pagnout, C. (2015). Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environmental Pollution., 202, 196-204.

Iavicoli, I., Leso, V., and Bergamaschi, A. (2012). Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. Journal of Nanomaterials, 2012, 5-5.

Iavicoli, I., Leso, V., Fontana, L., and Bergamaschi, A. (2011). Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci., 15(5), 481-508.

Gerber, A., Bundschuh, M., Klingelhofer, D., and Groneberg, D. A. (2013). Gold nanoparticles: recent aspects for human toxicology. Journal of Occupational Medicine and Toxicology, 8(1), 32.

Zhang, X.-D., Wu, H.-Y., Wu, D., Wang, Y.-Y., Chang, J.-H., Zhai, Z.-B., Meng, A.-M., Liu, P.-X., Zhang, L.-A., and Fan, F.-Y. (2010). Toxicologic effects of gold nanoparticles in vivo by different administration routes. International Journal of Nanomedicine, 5, 771-781.

Sukweenadhi, J., Setiawan, K. I., Avanti, C., Kartini, K., Rupa, E. J., and Yang, D.-C. (2021). Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering, 38(1), 1-8.

Mustapha, T., Misni, N., Ithnin, N. R., Daskum, A. M., and Unyah, N. Z. (2022). A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. International Journal of Environmental Research and Public Health, 19(2), 674.

Jini, D., Sharmila, S., Anitha, A., Pandian, M., and Rajapaksha, R. (2022). In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Scientific Reports, 12(1), 22109.

Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., and Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566.

Padmini, R., Nallal, V. U. M., Razia, M., Sivaramakrishnan, S., Alodaini, H. A., Hatamleh, A. A., Al-Dosary, M. A., Ranganathan, V., and Chung, W. J. (2022). Cytotoxic effect of silver nanoparticles synthesized from ethanolic extract of Allium sativum on A549 lung cancer cell line. Journal of King Saud University-Science, 34(4), 102001.

Jain, A., Anitha, R., and Rajeshkumar, S. (2019). Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Research Journal of Pharmacy and Technology, 12(6), 2790-2793.

Kwak, G.-Y., Han, Y., Baik, S., Kong, B.-M., Yang, D.-C., Kang, S.-C., and Sukweenadhi, J. (2022). Gold nanoparticles green-synthesized by the Suaeda japonica leaf extract and screening of anti-inflammatory activities on RAW 267.4 Macrophages. Coatings, 12(4), 460.

Aref, M. S. and Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689.

Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., and Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148-154.

Khan, M., Shaik, M. R., Adil, S. F., Khan, S. T., Al-Warthan, A., Siddiqui, M. R. H., Tahir, M. N., and Tremel, W. (2018). Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis. Dalton Transactions, 47(35), 11988-12010.

Rafique, M., Sadaf, I., Rafique, M., and Tahir, M. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells. Nanomedicine and Biotechnology, 45(7), 1272-1291.

Jebril, S., Fdhila, A., and Dridi, C. (2021). Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Scientific Reports, 11(1), 1-11.

Roy, A., Bulut, O., Some, S., Mandal, A. K., and Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673-2702.

Nasir, S., Walters, K. F., Pereira, R. M., Waris, M., Chatha, A. A., Hayat, M., and Batool, M. (2022). Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L.(Amaryllidaceae) against the dengue vector Aedes aegypti L.(Diptera: Culicidae). Journal of Asia-Pacific Entomology, 25(3), 101937.

Setiowati, F. K., Widoretno, W., Lukiati, B., and Prasetyawan, S. (2019). Comparison of organosulfur bioactive compounds in bulb, callus and cells suspension of single garlic (Allium sativum. L). IOP Conference Series: Earth and Environmental Science. IOP Publishing.

Prasonto, D., Riyanti, E., and Gartika, M. (2017). Uji aktivitas antioksidan ekstrak bawang putih (Allium sativum). ODONTO: Dental Journal, 4(2), 122-128.

Sutini, S., Widiwurjani, W., Purwanto, D. A., and Indrayanto, G. (2017). Teknologi kultur in vitro tanaman untuk menghasilkan metabolit sekunder & aplikasi di bidang farmasi. Research Report.

Nurchayati, Y., Santosa, S., Nugroho, L. H., and Indrianto, A. (2018). Penggunaan Kinetin, asam naftalen asetat, dan benzil adenin dalam induksi kalus kecubung (Datura metel L.) secara in vitro. Buletin Anatomi dan Fisiologi (Bulletin Anatomy and Physiology), 3(1), 105-109.

lashin, I., Hasanin, M., Hassan, S. A. M., and Hashem, A. H. (2021). Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conversion and Biorefinery.

Solanki, A., Rathod, D., Patel, I. C., and Panigrahi, J. (2021). Impact of silver nanoparticles as antibacterial agent derived from leaf and callus of Celastrus paniculatus Willd. Future Journal of Pharmaceutical Sciences, 7(1), 1-9.

Hasanin, M., Hassan, S. A., and Hashem, A. H. (2021). Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conversion and Biorefinery, 1-14.

Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37(2), 169-180.

Hussain, A., Qarshi, I. A., Nazir, H., and Ullah, I. (2012). Plant tissue culture: current status and opportunities. Recent Advances in Plant in Vitro Culture. 6(10), 1-28.

Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y.-W., Lee, E.-K., and Loake, G. J. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49(3), 149.

Xia, Q. H., Ma, Y. J., and Wang, J. W. (2016). Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials, 6(9), 160.

Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., and Sukartingsih, S. (2018). Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience, 10(3), 183-192.

Botcha, S. and Prattipati, S. D. (2019). Green synthesis of silver nanoparticles using Hyptis suaveolens (L.) Poit leaf extracts, their characterization and cytotoxicity evaluation against PC-3 and MDA-MB 231 cells. Biologia, 74, 783-793.

Khatoon, N., Mazumder, J. A., and Sardar, M. (2017). Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res., 2(107), 2572-0813.1000107.

Usmani, A., Dash, P. P., and Mishra, A. (2018). Metallic nanoformulations: Green synthetic approach for advanced drug delivery. Mater. Sci., 2(2), 1-4.

Patil, R. S., Kokate, M. R., and Kolekar, S. S. (2012). Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 234-238.

Shah, M. Z., Guan, Z.-H., Din, A. U., Ali, A., Rehman, A. U., Jan, K., Faisal, S., Saud, S., Adnan, M., and Wahid, F. (2021). Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Scientific Reports, 11(1), 1-14.

Vallinayagam, S., Rajendran, K., and Sekar, V. (2021). Green synthesis and characterization of silver nanoparticles using Naringi crenulate leaf extract: Key challenges for anticancer activities. Journal of Molecular Structure, 1243, 130829.

Urnukhsaikhan, E., Bold, B.-E., Gunbileg, A., Sukhbaatar, N., and Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), 21047.

Rajasekar, R., Samuel, M., Edison, T. N. J. I., and Raman, N. (2021). Sustainable synthesis of silver nanoparticles using Alstonia scholaris for enhanced catalytic degradation of methylene blue. Journal of Molecular Structure, 1246, 131208.

Yılmaz, D. D., Demirezen, D. A., and Mıhçıokur, H. (2021). Colorimetric detection of mercury ion using chlorophyll functionalized green silver nanoparticles in aqueous medium. Surfaces and Interfaces, 22, 100840.

Rani, P., Trivedi, L., Gaurav, S. S., Singh, A., and Shukla, G. (2022). Green synthesis of silver nanoparticles by Cassytha filiformis L. extract and its characterization. Materials Today: Proceedings, 49, 3510-3516.

Anju, T. R., Parvathy, S., Valiya Veettil, M., Rosemary, J., Ansalna, T. H., Shahzabanu, M. M., and Devika, S. (2021). Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Materials Today: Proceedings, 43, 3956-3960.

Ahmed Naseer, M. I., Ali, S., Nazir, A., Abbas, M., and Ahmad, N. (2022). Green synthesis of silver nanoparticles using Allium cepa extract and their antimicrobial activity evaluation. Chemistry International, 8(3), 89-94.

Lade, B. D. and Shanware, A. S. (2020). Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles, in Smart Nanosystems for Biomedicine. Optoelectronics and Catalysis. IntechOpen.

Peters, R., Herrera-Rivera, Z., Undas, A., van der Lee, M., Marvin, H., Bouwmeester, H., and Weigel, S. (2015). Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. Journal of Analytical Atomic Spectrometry. 30(6), 1274-1285.

Balachandar, R., Navaneethan, R., Biruntha, M., Kumar, K. K. A., Govarthanan, M., and Karmegam, N. (2022). Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Materials Letters, 311, 131572.

Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., and Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915.

Daoudi, H., Bouafia, A., Meneceur, S., Laouini, S. E., Belkhalfa, H., Lebbihi, R., and Selmi, B. (2022). Secondary metabolite from nigella sativa seeds mediated synthesis of silver oxide nanoparticles for efficient antioxidant and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials, 32(11), 4223-4236.

Isaac, R. R., Sakthivel, G., and Murthy, C. Research Article Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa bilimbi Fruit Extract. Journal of Nanotechnology.

Jain, A. S., Pawar, P. S., Sarkar, A., Junnuthula, V., and Dyawanapelly, S. (2021). Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. International Journal of Molecular Sciences. 22(21), 11993.