Molecular Docking Studies of an Isolated Angucycline of Stereospermum fimbriatum, a Novel Anti-MRSA Agent


  • Anis Fadhlina Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Hassan I. Sheikh Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Widya Lestari Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia



Stereospermum fimbriatum, molecular docking, Methicillin-resistant Staphylococcus aureus (MRSA), anti-MRSA plant, C1


A novel angucycline, C1 isolated from Stereospermum fimbriatum stem bark was subjected to molecular docking studies on five main targets of penicillin-binding protein 2a (PBP2a), β-lactamase, DNA topoisomerase IV, dehydrosqualene synthase (CrtM) and sortase A (SrtA) for anti-MRSA activity. The binding sites and docking scores of known inhibitors (positive control) were compared with C1. Docking analysis was carried out by AutoDock 4.0 package. The binding site of C1 closely resembled the positive control in all screened receptors. Inhibition constant of C1 was lower than the positive control tested for PBP2a, β-lactamase, dehydrosqualene synthase and sortase A except against DNA Topoisomerase IV. Structure-activity relationship (SAR) analysis of C1 showed that 7-CO was the most significant contributor to its activity since it formed hydrogen bonds with four of the five screened receptors. Molecular docking of C1 indicated that C1 can be a good candidate for new anti-MRSA drug development.


Fadhlina, A., Ahmed, Q. U., Shah, S. A. A., Jaffri, J. M., Ghafoor, K., Uddin, A. H., Ferdosh, S. & Islam Sarker, M. Z. (2020). Isolation and characterization of novel antibacterial compound from an untapped plant, Stereospermum fimbriatum. Natural Product Research, 34(5), 629-637.

Awang, A. F. I., Taher, M., & Susanti, D. (2016). The mode of antimicrobial action of Cinnamomum Burmannii’s essential oil & cinnamaldehyde. Jurnal Teknologi, 78(11-2), 41-47.

Alves, M.J., Ferreira, I. C., Froufe, H. J., Abreu, R., Martins, A., & Pintado M. (2013). Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 115(2), 346-357.

Lovering, A. L., Gretes, M.C., Safadi, S. S., Danel, F., De Castro, L., Page, M. G., & Strynadka, N. C. (2012). Structural Insights into the Anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole. Journal of Biological Chemistry, 287(38), 32096-32102.

Wang, W., Chen, R., Luo, Z., Wang, W., & Chen, J. (2018). Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Natural Product Research, 32(5), 558-563.

Lakshmi, P., Radhika, S., & Annamalai, A. (2011). Molecular docking analysis of phyto-ligands with multi drug resistant β-lactamases of Staphylococcus aureus. Trends in Bioinformatics, 4(1), 23-34.

Escaich, S. (2008). Antivirulence as a new antibacterial approach for chemotherapy. Current Opinion Chemical Biology, 12(4), 400-408.

Nitulescu, G., Zanfirescu, A., Olaru, O. T., Nicorescu, I. M., Nitulescu, G. M., & Margina, D. (2016). Structural analysis of sortase a inhibitors. Molecules, 21(11), 1591.

Song, Y., Liu, C-I., Lin, F-Y., No, J. H., Hensler, M., Liu, Y-L., & Nizet, V. (2009). Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus Aureus: In vitro, in vivo, and crystallographic results. Journal of Medicinal Chemistry, 52(13), 3869-3880.

Awang, A. F. I., Ferdosh, S., Sarker, Z. I., I. Sheikh, H., Ghafoor, K., & Yunus, K. (2016). Stereospermum Fimbriatum as a potential source of phytochemicals: A review of stereospermum genus. Current Pharmaceutical Biotechnology, 17(12), 1024-1035.

Fadhlina, A., Islam Sarker, M. Z., Ahmed, Q. U., Jaffri, J. M., Sheikh, H. I., & Ferdosh, S. (2020). Enrichment of antibacterial compound from the stem bark of Stereospermum Fimbriatum using supercritical carbon dioxide extraction. Separation Science and Technology, 55(9), 1656-1666.

Fadhlina, A., Sarker, Z. I., Majid, F. A. A., & Sheikh, H. I. (2021). GC-MS Analysis and Antimicrobial Activity of Stereospermum Fimbriatum against selected skin-associated pathogens. Jurnal Teknologi, 83(5), 67-73.

Rani, N., Vijayakumar, S., Velan, L. P. T., & Arunachalam, A. (2014). Quercetin 3-O-rutinoside mediated inhibition of PBP2a: Computational and experimental evidence to its anti-MRSA activity. Molecular BioSystems, 10(12), 3229-3237.

Manchester, J. I., Dussault, D. D., Rose, J. A., Boriack-Sjodin, P. A., Uria-Nickelsen, M., Ioannidis, G., & Hull, K. G. (2012). Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorganic & Medicinal Chemistry Letters, 22(15), 5150-5156.

Nitulescu, G., Nicorescu, I. M., Olaru, O. T., Ungurianu, A., Mihai, D. P., Zanfirescu, A., & Margina, D. (2017). Molecular docking and screening studies of new natural sortase a inhibitors. International Journal of Molecular Sciences, 18(10), 2217.

Zong, Y., Bice, T. W., Ton-That, H., Schneewind, O., & Narayana, S. V. L. (2004). Crystal structures of Staphylococcus Aureus Sortase A and its Substrate Complex. Journal of Biological Chemistry, 279, 31383-31389.

Xu, H. X., & Lee, S. F. (2001). Activity of plant flavonoids against antibiotic‐resistant bacteria. Phytotherapy Research, 15(1), 39-43.