Melanoma Skin Cancer Classification based on CNN Deep Learning Algorithms

Authors

  • Safa Riyadh Waheed ᵃComputer Techniques Engineering Department, Faculty of Information Technology, Imam Jaafar Al-Sadiq University, Iraq; ᶜFaculty of Engineering, School of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Saadi Mohammed Saadi Ministry of Education, Iraq
  • Mohd Shafry Mohd Rahim Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhaida Mohd Suaib Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fallah H Najjar Department of Computer Systems Techniques, Technical Institute of Najaf, Al-Furat Al-Awsat Technical University, Iraq
  • Myasar Mundher Adnan Islamic University, Najaf, Iraq
  • Ali Aqeel Salim Laser Center and Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n3.2900

Keywords:

Deep learning, CNN, melanoma, skin cancer, classification

Abstract

Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.

References

Corrie, P., Hategan, M., Fife, K., Parkinson, C. (2014). Management of melanoma. Br Med Bull, 111(1): 149-162.

Salim, A. A., Bakhtiar, H., Bidin, N., & Ghoshal, S. K. (2018). Antibacterial activity of decahedral cinnamon nanoparticles prepared in honey using PLAL technique. Materials Letters, 232, 183-186.

Jerant, A. F., Johnson, J. T., Sheridan, C. D., & Caffrey, T. J. (2000). Early detection and treatment of skin cancer. American Family Physician, 62(2), 357-368.

Waheed, S. R., Suaib, N. M., Rahim, M. S. M., Adnan, M. M., & Salim, A. A. (2021, April). Deep learning algorithms-based object detection and localization revisited. Journal of Physics: Conference Series, 1892(1), 012001. IOP Publishing.‏

Ali, A. H., & Najjar, F. H. (2018, September). Integrating the kernel method to autonomous learning multi-model systems for online data. 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1-5). IEEE.

Kadhim, K. A., Mohamed, F., & Khudhair, Z. N. (2021, April). Deep learning: Classification and automated detection earlier of Alzheimer’s disease using brain MRI images. Journal of Physics: Conference Series, 1892(1), 012009. IOP Publishing.‏

Adnan, M. M., Rahim, M. S. M., Al-Jawaheri, K., Ali, M. H., Waheed, S. R., & Radie, A. H. (2020, September). A survey and analysis on image annotation. 2020 3rd International Conference on Engineering Technology and its Applications (IICETA) (pp. 203-208). IEEE.‏

Hathot, S. F., Jubier, N. J., Hassani, R. H., & Salim, A. A. (2021). Physical and elastic properties of TeO2-Gd2O3 glasses: Role of zinc oxide contents variation. Optik, 247, 167941.

Kadhim, K. A., Adnan, M. M., Waheed, S. R., & Alkhayyat, A. (2021). Automated high-security license plate recognition system. Materials Today: Proceedings.‏

Salim, A. A., Bakhtiar, H., Shamsudin, M. S., Aziz, M. S., Johari, A. R., & Ghoshal, S. K. (2022). Performance evaluation of rose bengal dye-decorated plasmonic gold nanoparticles-coated fiber-optic humidity sensor: A mechanism for improved sensing. Sensors and Actuators: A. Physical, 347, 113943.

Hathot, S. F., Abbas, S. I., AlOgaili, H. A. T., & Salim, A. A. (2022). Influence of deposition time on absorption and electrical characteristics of ZnS thin films. Optik, 260, 169056.

Najjar, F. H., Al-Jawahry, H. M., Al-Khaffaf, M. S., & Al-Hasani, A. T. (2021, April). A novel hybrid feature extraction method using LTP, TFCM, and GLCM. Journal of Physics: Conference Series,1892(1), 012018. IOP Publishing.

Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual tracking. Advances in Neural Information Processing Systems, 26.

Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014). Scalable object detection using deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2147-2154).

Schmidhuber, J., Meier, U., & Ciresan, D. (2012, June). Multi-column deep neural networks for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3642-3649). IEEE Computer Society.

Dhungel, N., Carneiro, G., & Bradley, A. P. (2015, November). Automated mass detection in mammograms using cascaded deep learning and random forests. 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-8). IEEE.

Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., & Feng, D. (2014, April). Early diagnosis of Alzheimer's disease with deep learning. 2014 IEEE 11th international symposium on biomedical imaging (ISBI) (pp. 1015-1018). IEEE.

Suk, H. I., & Shen, D. (2013). Deep learning-based feature representation for AD/MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16 (pp. 583-590). Springer Berlin Heidelberg.

Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 221-231.

Waheed, S. R., Rahim, M. S. M., Suaib, N. M., & Salim, A. A. (2023). CNN deep learning-based image to vector depiction. Multimedia Tools and Applications, 1-20.

Khudhair, Z. N., Mohamed, F., & Kadhim, K. A. (2021, April). A review on copy-move image forgery detection techniques. Journal of Physics: Conference Series, 1892(1), 012010. IOP Publishing.‏

Andri, C., Alkawaz, M. H., & Waheed, S. R. (2019, June). Examining effectiveness and user experiences in 3d mobile based augmented reality for msu virtual tour. 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 161-167). IEEE.‏

Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Jafari, M. H., Ward, K., Najarian, K. (2016). Melanoma detection by analysis of clinical images using convolutional neural network. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1373-1376).

Ayan, E., Unver, H. M. (2018). Data augmentation importance for classification of skin lesions via deep learning. Ielectric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (pp. 1-4). Istanbul.

Salim, A. A., Ghoshal, S. K., Danmallam, I. M., Sazali, E. S., Krishnan, G., Aziz, M. S., & Bakhtiar, H. (2021, April). Distinct optical response of colloidal gold-cinnamon nanocomposites: Role of pH sensitization. Journal of Physics: Conference Series, 1892(1), 012039. IOP Publishing.

Abbas, A. M., Abid, M. A., Abbas, K. N., Aziz, W. J., & Salim, A. A. (2021, April). Photocatalytic activity of Ag-ZnO nanocomposites integrated essential ginger oil fabricated by green synthesis method. Journal of Physics: Conference Series, 1892(1), 012005. IOP Publishing.

Kwasigroch, A., Mikolajczyk, A., Grochowski, M. (2017). Deep neural networks approach to skin lesions classification—A comparative analysis. 2017 IEEE Conference (pp. 1069-1074).

Lopez, A. R., Giro-i-Nieto, X., Burdick, J., Marques, O. (2017). Skin lesion classification from dermoscopic images using deep learning techniques. Proceedings of the lASTED International Conference Biomedical Engineering (Biomed 2017) (pp. 49-54). Innsbruck, Austria.

Salim, A. A., Ghoshal, S. K., & Bakhtiar, H. (2022). Prominent absorption and luminescence characteristics of novel silver-cinnamon core-shell nanoparticles prepared in ethanol using PLAL method. Radiation Physics and Chemistry, 190, 109794.

Salim, A. A., Mahraz, Z. A. S., Anigrahawati, P., Jan, N. A. M., Ghoshal, S. K., Sahar, M. R., ... & Sazali, E. S. (2021). Structural, chemical and magnetic features of gold nanoshapes integrated-Er2O3-doped tellurite glass system prepared by a conventional melt-quenching technique. Applied Physics A, 127(9), 673.

Ali, A. A., Al-Marzouqi, H. (2017). Melanoma detection using regular convolutional neural networks. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA)(pp. 1-5). IEEE.

Downloads

Published

26-05-2023

Issue

Section

Article