Research Trends on Functional Data Analysis Using Scopus Database: A Bibliometric Analysis

Authors

  • Jamaludin Suhaila ᵃUTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Fauzee Hamdan Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n4.2863

Keywords:

Bibliometric analysis, Scopus database, Functional data analysis, VOSviewer, Author Keyword Co-occurrences

Abstract

Functional data analysis (FDA) has received significant attention from researchers due to its flexibility and diverse applications in various fields. FDA provides a comprehensive framework for analysing and extracting information from complex and high-dimensional datasets, enabling researchers to obtain insights into the underlying processes, improve modelling, and make accurate predictions. Therefore, understanding the FDA topic and its features and tools, as well as identifying the collaborative networks, are crucial for the development of its research areas. The objective of the present bibliometric study is to analyse the global research trend in FDA areas based on publication outputs, authorships, co-authorships, affiliated countries, and the co-occurrence of author keywords, which will enable researchers to assess the existing knowledge environment, future trends, potential research gaps, and collaboration opportunities. The publications from the year 1989 to 2021 were retrieved from the Scopus database, resulting in 1712 articles in journals after screening. Results have shown that articles published in the Journal of the American Statistical Association received the highest citations. Nearly 43% of the published articles were contributed by the leading authors from the USA, followed by China (11.5%) and Spain (9.4%). According to the QS World University Ranking 2021, eight of the top 20 productive institutions were ranked among the top 100 best universities. The findings indicated that researchers had intensively developed and applied FDA tools and features, such as smoothing, principal component analysis, regression, and clustering, in various domains. In addition, the expansion of FDA tools could be seen based on the recent progress in author keywords. New keywords, including function-on-function regression, function-on-scalar regression, scalar-on-function regression, outlier detection, structural health monitoring, and COVID-19, have arisen recently. Due to public concern about emerging diseases, future FDA work is expected to rise, particularly in the health sciences and biomedical fields.

References

Suhaila, J. (2021). Functional data visualization and outlier detection on the anomaly of El Niño southern oscillation. Climate, 9(118).

Wang, D., Zhong, Z.; Bai, K., & He, L. (2019). Spatial and temporal variabilities of PM2.5 concentrations in China using functional data analysis. Sustainability, 11(6), 1620.

Ullah, S., & Finch C. F. (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13, 43.

Suhaila, J., & Yusop, Z. (2017). Spatial and temporal variabilities of rainfall data using functional data analysis. Theoretical and Applied Climatology, 129, 229-242.

Wang, J. L., Chiou, J. M., & Muller, H. G. (2016). Review of functional data analysis. Annual Review of Statistics and its Application, 3, 257-295.

Aneiros, G., Cao, R., Fraiman, R., Genest, C., & Vieu, P. (2019). Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis,170, 3-9.

Aneiros, G., Horová, I., Hušková, M., & Vieu, P. (2022). On functional data analysis and related topics. Journal of Multivariate Analysis, 189.

Md Khudzari, J., Kurian, J., Tartakovsky, B., & Vijaya Raghavan, G.S. (2018). Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochemical Engineering Journal, 136, 51-60.

Sweileh, W. M. (2020). Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious disease. Globalization and Health, 16, 44.

van Eck, N. J. & Waltman, L. (2020). VOSviewer Manual.

Ramsay, J. O., & Abrahamowicz, M. (1989). Binomial regression with monotone splines: A psychometric application. Journal of the American Statistical Association, 84(408), 906-915.

Ramsay, J.O., Altman, N., & Bock, R.D. (1994). Variation in height acceleration in the Fels growth data. Canadian Journal of Statistics, 22(1), 89-102.

Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association,100(470), 577-590.

Hyndman, R. J., & Shahid Ullah, Md. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics and Data Analysis, 51(10), 4942-4956.

He, G., Müller, H. G., & Wang, J. L. (2003). Functional canonical analysis for square integrable stochastic processes. Journal of Multivariate Analysis, 85(1), 54-77.

Yao, F., Muller, H. G., & Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. Annals of Statistics 33(6), 2873-2903.

Rice, J. A., & Wu, C. O. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics, 57(1), 253-259.

Ramsay, J. O. (2000). Functional Components of Variation in Handwriting. Journal of the American Statistical Association, 95(449), 9-15.

Liebl, D. (2013). Modeling and forecasting electricity spot prices: A functional data perspective. Annals of Applied Statistics, 7(3), 1562-1592.

Greven, S., Crainiceanu, C., Caffo, B., & Reich, D. (2010). Longitudinal functional principal component analysis. Electronic Journal of Statistics, 4, 1022-1054.

Scheipl, F., Staicu, A-M., & Greven, S. (2015). Functional additive mixed models. Journal of Computational and Graphical Statistics, 24(2), 477-501.

Ratcliffe, S. J., Heller, G. Z., & Leader, L. R. (2002). Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression. Statistics in Medicine, 21(8), 1115-1127.

Chiou, J. M., Müller, H. G., & Wang, J. L. (2003). Functional quasi-likelihood regression models with smooth random effects. Journal of the Royal Statistical Society Series B Statistical Methodology, 65(2), 405-423.

Hall, P., Müller, H. G., & Wang, J. L. (2006). Properties of principal component methods for functional and longitudinal data analysis. Annals of Statistics, 34(3), 1493-1517.

Bernardi, M. S., Carey, M., Ramsay, J. O., & Sangalli, L. M. (2018). Modeling spatial anisotropy via regression with partial differential regularization. Journal of Multivariate Analysis, 167,15-30.

Grambsch, P. M., Randall, B. L., Bostick, R. M., Potter, J. D., & Louis, T. A. (1995). Modeling the labeling index distribution: An application of functional data analysis. Journal of the American Statistical Association, 90(431), 813-821.

Dai, X., Lin, Z., & Müller, H. G. (2021). Modeling sparse longitudinal data on Riemannian manifolds. Biometrics 77(4), 1328-1341.

Hermanussen, M., & Meigen, C. (2007). Phase variation in child and adolescent growth. International Journal of Biostatistics, 3(1).

Li, P. L., & Chiou, J. M. (2021). Functional clustering and missing value imputation of traffic flow trajectories. Transportmetrica B: Transport Dynamics, 9(1), 1-21.

Huang, W., Gao, L., Guo, W., Cui, H., Li, Z., Xu, X., & Wang, G. (2021). Analysis into functional data of spectral images from bloodstains of human and two species of animal. Forensic Science and Technology, 46(6), 551-558.

James, G.M. (2002). Generalized linear models with functional predictors. Journal of the Royal Statistical Society Series B Statistical Methodology, 64(3), 411-432.

Newell, J., McMillan, K., Grant, S., & McCabe, G. (2006). Using functional data analysis to summarise and interpret lactate curves. Computers in Biology and Medicine, 36(3), 262-275.

Ryan, W., Harrison, A., & Hayes, K. (2006). Functional data analysis of knee joint kinematics in the vertical jump. Sports Biomechanics, 5(1), 121-138.

Song, J. J., Deng, W., Lee, H-J., & Kwon, D. (2008). Optimal classification for time-course gene expression data using functional data analysis. Computational Biology and Chemistry, 32(6), 426-432.

Dong, J. J., Wang, L., Gill, J., & Cao, J. (2018). Functional principal component analysis of glomerular filtration rate curves after kidney transplant. Statistical Methods in Medical Research, 27(12), 3785-3796.

Zhang, B., Zheng, K., Huang, Q., Feng, S., Zhou, S. & Zhang, Y. (2020). Aircraft engine prognostics based on informative sensor selection and adaptive degradation modeling with functional principal component analysis. Sensors, 20(3), 920.

Lin, Z.& Wang, J.L. (2022). Mean and Covariance Estimation for Functional Snippets. Journal of American Statistical Association, 117(537).

Suhaila, J., Jemain, A.A., Hamdan, M.F., & Wan, ZWZ. (2011). Comparing rainfall patterns between regions in Peninsular Malaysia via a functional data analysis technique. Journal of Hydrology, 411,197-206.

Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. Annals of Statistics, 24(1), 1-24.

Ocaña, F.A., Aguilera, A.M., & Valderrama, M.J. (1999). Functional principal components analysis by choice of norm. Journal of Multivariate Analysis, 71(2), 262-276.

Şentürk, D., & Müller, H.G. (2010). Functional varying coefficient models for longitudinal data. Journal of American Statistical Association, 105(491),1256-1264.

Din, W. R. W., Rambely, A. S., & Jemain, A. A. (2013). Smoothing of GRF data using functional data analysis technique. International Journal of Applied Mathematics and Statistics, 47(17), 70-77.

Ivanescu, A.E. (2018). Function-on-function regression for two-dimensional functional data. Communication in Statistics – Simulation and Computation, 47(9), 2656-2669.

Koymen Keser, I.,& Deveci Kocakoç, I. (2015). Smoothed functional canonical correlation analysis of humidity and temperature data. Journal of Applied Statistics, 42(10), 2126-2140.

Zin, M. A. M., Rambely, A. S., Ariff, N. M., & Ariffin, M. S. (2020). Smoothing and differentiation of kinematic data using functional data analysis approach: An application of automatic and subjective methods. Applied Sciences, 10(7),2493.

Manteiga, W. G., & Vieu, P. (2007). Statistics for functional data. computational statistics & data analysis, 51(10), 4788-4792.

Barber, R. F., Reimherr, M., & Schill, T. (2017). The function-on-scalar LASSO with applications to longitudinal GWAS. Electronic Journal of Statistics, 11(1), 1351-1389.

Saeys, W., De Ketelaere, B., & Darius, P. (2008). Potential applications of functional data analysis in chemometrics. Journal of Chemometrics, 22(5), 335-344.

Sørensen, H., Goldsmith, J., & Sangalli, L.M. (2013). An introduction with medical applications to functional data analysis. Statistics in Medicine, 32(30), 5222-5240.

Chen, K., & Müller, H-G. (2014). Modeling conditional distributions for functional responses, with application to traffic monitoring via GPS-enabled mobile phones. Technometrics, 56(3),347-358.

Talská, R., Machalová, J., Smýkal, P., & Hron, K. (2020). A comparison of seed germination coefficients using functional regression. Application in Plant Sciences, 8(8): e11366.

Rha, H., Kao, M. H., & Pan, R. (2021). Bagging-enhanced sampling schedule for functional quadratic regression. Journal of Statistical Theory and Practice, 15, 91.

Bamisile, O., Ojo, O., Yimen, N., Adun, H., Li, J., Obiora, S., & Huang, Q. (2021). Comprehensive functional data analysis of China's dynamic energy security index. Energy Reports, 7, 6246-6259.

Hitchcock, D. B.; Casella, G.; Booth, J. G. (2006). Improved estimation of dissimilarities by presmoothing functional data. Journal of American Statistical Association, 101(473), 211-222.

Tokushige, S., Yadohisa, H., & Inada, K. (2007). Crisp and fuzzy k-means clustering algorithms for multivariate functional data. Computational Statistics, 22(1), 1-16.

Dabo-Niang, S., Ferraty, F., & Vieu, P. (2007). On the using of modal curves for radar waveforms classification. Computational Statistics & Data Analysis, 51(10), 4878-4890.

Gattone, S. A., & Rocci, R. (2012). Clustering curves on a reduced subspace. Journal of Computational and Graphical Statistics, 21(2), 361-379.

Misumi, T., Matsui, H., & Konishi, S. 2019. Multivariate functional clustering and its application to typhoon data. Behaviormetrika, 46(1), 163-175.

Giacofci, M., Lambert-Lacroix, S., Marot, G., & Picard, F. (2013). Wavelet-based clustering for mixed-effects functional models in high dimension. Biometrics, 69(1), 31-40.

Liebl, D., Willwacher, S., Hamill, J., & Brüggemann, G-P. (2014). Ankle plantarflexion strength in rearfoot and forefoot runners: A novel cluster analytic approach. Human Movement Science, 35, 104-120.

Léger, A-E., & Mazzuco, S. (2021). What can we learn from the functional clustering of mortality data? An application to the human mortality database. European Journal of Population, 37, 769-798.

Faraway, J. J. (1997). Regression analysis for a functional response. Technometrics, 39(3), 254-261.

Faraway, J. J. (1999). A graphical method of exploring the mean structure in longitudinal data analysis? Journal of Computational and Graphical Statistics, 8(1), 60-68.

Lucero, J. C. (2002). Identifying a differential equation for lip motion. Medical Engineering & Physics, 24(7-8), 521-528.

Dalla Rosa, M., Sangalli, L.M., & Vantini, S. (2014). Principal differential analysis of the Aneurisk65 data set. Advances in Data Analysis and Classification, 8(3), 287-302.

Jang, E., & Lim, Y. (2021). Classification via principal differential analysis. Communication for Statistical and Applications and Methods, 28(2), 135-150.

Acal, C., Aguilera, A.M., & Escabias, M. (2020). New modeling approaches based on varimax rotation of functional principal components. Mathematics, 8(11), 2085.

Acal, C., Aguilera, A.M., Sarra, A., Evangelista, A., Battista, T.D., & Palermi, S. (2022). Functional ANOVA approaches for detecting changes in air pollution during the COVID-19 pandemic. Stochastic Environmental Research and Risk Assessment, 36(4),1083-1101.

Acal, C., Escabias, M., Aguilera, A.M., & Valderrama, M.J. (2021). COVID-19 data imputation by multiple function-on-function principal component regression. Mathematics, 9(11), 1237.

Kumar, V., Sood, A., Gupta, S., & Sood, N. (2021). Prevention- versus promotion-focus regulatory efforts on the disease incidence and mortality of COVID-19: A multinational diffusion study using functional data analysis. Journal of International Marketing, 29(1), 1-22.

Scimone, R., Menafoglio, A., Sangalli ,L.M., & Secchi, P. (2021). A look at the spatio-temporal mortality patterns in Italy during the COVID-19 pandemic through the lens of mortality densities. Spatial Statistics, 49(1).

Chen, Z., Lei, X., Bao, Y., Deng, F., Zhang, Y., & Li, H. (2021). Uncertainty quantification for the distribution-to-warping function regression method used in distribution reconstruction of missing structural health monitoring data. Structural Health Monitoring, 20(6), 3436-3452.

Jiang, H., Wan, C., Yang, K., Ding, Y., & Xue, S. (2021). Modeling relationships for field strain data under thermal effects using functional data analysis. Measurement, 177.

Reiss, P. T., Mennes, M., Petkova, E., Huang, L., Hoptman, M. J., Biswal, B. B., Colcombe, S. J., Zuo, X-N., & Milham, M. P. (2011). Extracting information from functional connectivity maps via function-on-scalar regression. NeuroImage, 56(1), 140-148.

Ding, H., Lu, Z., Zhang, J., & Zhang, R. (2018). Semi-functional partial linear quantile regression. Statistics & Probability Letters, 142, 92-101.

Wang, Y., Kong, L., Jiang, B., Zhou, X., Yu, S., Zhang, L., & Heo, G. (2019). Wavelet-based LASSO in functional linear quantile regression. Journal of Statistical Computation and Simulation, 89(6), 1111-1130.

Almanjahie, I. M., Chikr Elmezouar, Z., Bachir, B. A., & Kaid, Z. (2020). Spatial local linear estimation of the L1-conditional quantiles for functional regressors. Communication in Statistics – Theory and Methods, 49(23), 5666-5685.

Xu, D., & Du, J. (2020). Nonparametric quantile regression estimation for functional data with responses missing at random. Metrika, 83(8), 977-990.

Laksaci, A., Ould Saïd, E., & Rachdi, M. (2021). Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model. Metrika, 84(6), 895-911.

Meyer, M. J., Coull, B. A., Versace, F., Cinciripini, P., & Morris, J.S. (2015). Bayesian function-on-function regression for multilevel functional data. Biometrics, 71(3), 563-574.

Rügamer, D., Brockhaus, S., Gentsch, K., Scherer, K., & Greven, S. (2018). Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals. Journal of the Royal Statistical Society Series C Applied Statistics, 67(3), 621-642.

Gellar, J. E., Colantuoni, E., Needham, D. M., & Crainiceanu, C. M. (2014). Variable-domain functional regression for modeling ICU data. Journal of the American Statistical Association, 109(508), 1425-1439.

Brockhaus, S., Fuest, A., Mayr, A., & Greven, S. (2018). Signal regression models for location, scale and shape with an application to stock returns. Journal of the Royal Statistical Society Series C Applied Statistics, 67(3), 665-686.

Chen, Y., Goldsmith, J., & Ogden, R.T. (2019). Functional Data Analysis of Dynamic PET Data. Journal of American Statistical Association,114(526), 595-609.

Shi, B., & Ogden, R.T. (2021). Inference in functional mixed regression models with applications to Positron Emission Tomography imaging data. Statistics in Medicine, 40(4), 4640-4659.

Serra-Burriel, F., Delicado, P., & Cucchietti, F. M. (2021). Wildfires vegetation recovery through satellite remote sensing and functional data analysis. Mathematics, 9(11), 1305.

Vilar, J. M., Raña, P., & Aneiros, G. (2016). Using robust FPCA to identify outliers in functional time series, with applications to the electricity market. SORT, 40(2), 321-348.

Rennie, N., Cleophas, C., Sykulski, A. M., & Dost, F. (2021). Identifying and responding to outlier demand in revenue management. European Journal of Operational Research, 293(3),1015-1030.

Downloads

Published

27-08-2023