Lubricity Performance of Ethylene Glycol Ester from Soybean Oil as a Lubricity Enhancer Bio-Additive for Low-Sulfur Diesel Fuel

Authors

  • Yulfi Zetra Department of Chemistry, Faculty of Science and Data Analitics, Institut Teknologi Sepuluh Nopember, Kampus Keputih, Surabaya 60111, Indonesia
  • Rhiby Ainur Basit Hariyanto Department of Chemistry, Faculty of Science and Data Analitics, Institut Teknologi Sepuluh Nopember, Kampus Keputih, Surabaya 60111, Indonesia
  • R. Arizal Firmansyah Department of Chemistry Education, Faculty of Science and Technology, Universitas Islam Negeri Walisongo, Semarang 50185, Indonesia https://orcid.org/0000-0003-1264-050X
  • R. Y. Perry Burhan Department of Chemistry, Faculty of Science and Data Analitics, Institut Teknologi Sepuluh Nopember, Kampus Keputih, Surabaya 60111, Indonesia https://orcid.org/0000-0002-9084-9790
  • Pusparatu Departement of Oil and Processing Engineering, Politiknik Energi dan Mineral Akamigas, Jl. Gajah Mada No.38, Cepu, Blora, 58315, Indonesia

DOI:

https://doi.org/10.11113/mjfas.v19n4.2843

Keywords:

Bio-additive, low-sulfur diesel, lubrication, ethylene glycol ester

Abstract

The present study aims to show the tribological properties of soybean oil's ethylene glycol ester (SOEGE) and its effect on low-sulfur diesel fuel lubrication.  The SOEGE or 2-hydroxyethyl ester was synthesized by a transesterification reaction of soybean oil and ethylene glycol with a potassium carbonate catalyst. The product was characterized using Gas Chromatography-Mass Spectrometry (GC-MS). Then, the lubricity of commercial diesel fuel (Pertadex) and SOEGE were tested alone using the High-Frequency Reciprocating Rig (HFRR) machine. Its mixture form with various product doses in Pertadex (0.2, 0.4, 0.6, 0.8, and 1% v/v) was also tested with the same apparatus. This study showed that the product's coefficient of friction and Wear Scar Diameters (WSD) were 0.057 and 154.4 m, respectively. This value is lower than Pertadex and Fatty Acids Methyl Ester (FAME) of Soybean oil from the literature. Furthermore, adding products into Pertadex can reduce the coefficient of friction and WSD of Pertadex. The Pertadex coefficient of friction was reduced from 0.161 to 0.135 after the addition of 0.8% product. At a concentration of 1% product, WSD Pertadex was successfully reduced by 39.42%. These phenomena imply that ester ethylene glycol has an excellent lubricating effect on low-sulfur diesel. This work's findings open opportunities for other researchers to develop alternative lubricating bio-additives for low-sulfur diesel through the in-depth study of tribochemistry or tribosurface.

References

S. Agarwal, V. K. Chhibber, and A. K. Bhatnagar. (2013). Tribological behavior of diesel fuels and the effect of anti-wear additives. Fuel, 106, 21-29. Doi: 10.1016/J.FUEL.2012.10.060.

Z. Hu, L. Zhang, and Y. Li. (2017). Investigation of tall oil fatty acid as antiwear agent to improve the lubricity of ultra-low sulfur diesels.Tribol. Int., 114(January), 57-64. Doi: 10.1016/j.triboint.2017.04.016.

M. A. Hazrat, M. G. Rasul, and M. M. K. Khan. (2015). Lubricity Improvement of the ultra-low sulfur diesel fuel with the biodiesel. Energy Procedia, 75, 111-117. Doi: 10.1016/j.egypro.2015.07.619.

V. S. Mello, E. R. Do Vale Souza, M. V. De Araújo Oliveira, and S. M. Alves. 2014. Effect of desulfurization of diesel and its blends with biodiesel on metallic contact. Mater. Res., 17, 82-88. Doi: 10.1590/1516-1439.222313.

S. M. Reddy, N. Sharma, N. Gupta, and A. K. Agarwal. (2018). Effect of non-edible oil and its biodiesel on wear of fuel injection equipment components of a genset engine, Fuel, 222(May), 841-851. Doi: 10.1016/j.fuel.2018.02.132.

M. A. Mujtaba et al. (2021). Effect of palm-sesame biodiesel fuels with alcoholic and nanoparticle additives on tribological characteristics of lubricating oil by four ball tribo-tester. Alexandria Eng. J., 60(5), 4537-4546. Doi: 10.1016/j.aej.2021.03.017.

D. X. Peng. (2017). Biodiesel improves lubricity of low-sulfur petro-diesels. Chem. Technol. Fuels Oils, 52(6), 699-703. Doi: 10.1007/s10553-017-0762-1.

G. Anastopoulos, E. Lois, A. Serdari, F. Zanikos, S. Stournas, and S. Kalligeros. (2001). Lubrication properties of low-sulfur diesel fuels in the presence of specific types of fatty acid derivatives, 15(12), 106-112. Doi: 10.1021/ef990232n.

R. H. Barbour, D. J. Rickeard, and N. G. Elliott. (2000). Understanding diesel lubricity. SAE Tech. Pap., 724, 1-13. Doi: 10.4271/2000-01-1918.

B. Hornby, G. Cuckston, R. Caprotti, and I. More. (2013). Pushing the boundaries of the HFRR: Impact of increased test severity on wear, SAE Tech. Pap., 11. Doi: 10.4271/2013-01-2688.

Bhatia, S.C. (2014). Advanced Renewable Energy Systems, (Part 1 and 2). WPI Publishing. https://doi.org/10.1201/b18242.

N. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J., 264, 899-935. Doi: 10.1016/j.cej.2014.11.056.

A. Bahrami, N. Soltani, M. I. Pech-Canul, and C. A. Gutiérrez. (2016). Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol., 46(2), 143-207. Doi: 10.1080/10643389.2015.1077067.

A. Bahrami, G. Schierning, and K. Nielsch. (2020). Waste Recycling in thermoelectric materials. Adv. Energy Mater., 10(19). Doi: 10.1002/aenm.201904159.

M. Gul, H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, and M. A. Mujtaba. (2020). A review: role of fatty acids composition in characterizing potential feedstock for sustainable green lubricants by advance transesterification process and its global as well as pakistani prospective. Bioenergy Res., 13(1). Doi: 10.1007/s12155-019-10040-7.

G. Karmakar, P. Ghosh, and B. K. Sharma. (2017). Chemically modifying vegetable oils to prepare green lubricants. Lubricants, 5(4), 1-17. Doi: 10.3390/lubricants5040044.

L. Prasad, L. M. Das, and S. N. Naik. (2012). ‘Effect of castor oil, methyl and ethyl esters as lubricity enhancer for low lubricity diesel fuel (LLDF). Energy and Fuels, 26(8), 5307-5315. Doi: 10.1021/ef300845v.

J. Joshy, Naveen, and D. Mahipal. (2021). The effect of free fatty acids on the tribological properties of karanja oil. IOP Conf. Ser. Mater. Sci. Eng., 1114(1), 012053. Doi: 10.1088/1757-899x/1114/1/012053.

D.-X. Peng. (2016). Room temperature tribological performance of biodiesel (soybean oil). Ind. Lubr. Tribol., 68(6), 617-623.

K. P. Costa et al. (2018). Synthesis and evaluation of biocide and cetane number improver additives for biodiesel from chemical changes in triacylglycerides. J. Braz. Chem. Soc., 29(12), 2605-2615. Doi: 10.21577/0103-5053.20180140.

G. Knothe. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci., 2(7), 759-766. Doi: 10.1039/b903941d.

E. Sukjit, P. Poapongsakorn, K. D. Dearn, M. Lapuerta, and J. Sánchez-Valdepeñas. (2017). Investigation of the lubrication properties and tribological mechanisms of oxygenated compounds. Wear, 376-377, 83-842. Doi: 10.1016/j.wear.2017.02.007.

J. Zhang, M. Lu, F. Ren, G. Knothe, and Q. Tu. (2019). A greener alternative titration method for measuring acid values of fats, oils, and grease. JAOCS, J. Am. Oil Chem. Soc., 96(10), 1083-1091. Doi: 10.1002/aocs.12281.

Maulidiyah, M. Nurdin, F. Fatma, M. Natsir, and D. Wibowo. (2017). Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing. Anal. Chem. Res., 12, 1-9. Doi: 10.1016/j.ancr.2017.01.002.

A. Sánchez, R. Maceiras, A. Cancela, and M. Rodríguez. (2012). Influence of n-hexane on in Situ transesterification of marine macroalgae. Energies, 5(2), 243-257. Doi: 10.3390/en5020243.

A. J. Dijkstra. (2015). Vegetable Oils: Composition and Analysis, (1st ed.). Elsevier Ltd. Doi: 10.1016/B978-0-12-384947-2.00708-X.

M. C. Hsiao, P. H. Liao, N. V. Lan, and S. S. Hou. (2021). Enhancement of biodiesel production from high-acid-value waste cooking oil via a microwave reactor using a homogeneous alkaline catalyst, Energies, 14(2), 1-11. Doi: 10.3390/en14020437.

B. Panchal, Q. Shenjun, T. Chang, S. Yuzhuang, W. Jinxi, and B. Kai. (2019). Production of methyl esters from fried soybean oil using dimethyl carbonate with hydrobromic acid. Energy Reports, 5, 1463-1469. Doi: 10.1016/j.egyr.2019.10.007.

F. Li, Z. Liu, Z. Ni, and H. Wang. (2019). Effect of biodiesel components on its lubrication performance. J. Mater. Res. Technol., 8(5), 3681-3687. Doi: 10.1016/j.jmrt.2019.06.011.

M. S. N. Awang et al. (2021). Effect of addition of palm oil biodiesel in waste plastic oil on diesel engine performance, emission, and lubricity, 6(33), 21655-21675. Doi: 10.1021/acsomega.1c03073.

L. Aisyah, C. S. Wibowo, S. A. Bethari, D. Ufidian, and R. Anggarani. (2018). Monoglyceride contents in biodiesel from various plants oil and the effect to low temperature properties. IOP Conf. Ser. Mater. Sci. Eng., 316(1). Doi: 10.1088/1757-899X/316/1/012023.

G. Knothe and K. R. Steidley. (2005), Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy and Fuels, 19(3), 1192-1200. Doi: 10.1021/ef049684c.

B. M. Fry, M. Y. Chui, G. Moody, and J. S. S. Wong. (2020). Interactions between organic friction modifier additives.Tribol. Int., 151(May),106438. Doi: 10.1016/j.triboint.2020.106438.

M. Lapuerta, J. Sánchez-Valdepeñas, D. Bolonio, and E. Sukjit. (2016). Effect of fatty acid composition of methyl and ethyl esters on the lubricity at different humidities. Fuel, 184, 202-210. Doi: 10.1016/j.fuel.2016.07.019.

P. Y. Hsieh and T. J. Bruno. (2015). A perspective on the origin of lubricity in petroleum distillate motor fuels’, Fuel Process. Technol., 129, 52-60. Doi: 10.1016/j.fuproc.2014.08.012.

M. Kaneta, K. Matsuda, and H. Nishikawa. (2022). Effects of Thermal Properties of Contact Materials and Slide-Roll Ratio in Elastohydrodynamic Lubrication. J. Tribol., 144(6), 1-10. Doi: 10.1115/1.4053095.

Z. M. Zulfattah et al. (2021). Friction and wear performance of oleate-based esters with two-, three-, and four-branched molecular structure in pure form and mixture. J. Tribol., 143(1), 1-10. Doi: 10.1115/1.4047584.

B. Sun et al. (2022). Synthesis and evaluation of alkyl methacrylate-norbornene anhydride copolymers with various pendants as pour point depressants for soybean biodiesel-diesel blends. Fuel, 317, 123542. Doi: 10.1016/j.fuel.2022.123542.

Y. Chen, X. Wang, Z. Han, A. Sinyukov, A. Clearfield, and H. Liang. (2022). Amphiphilic zirconium phosphate nanoparticles as tribo-catalytic additives of multi- performance lubricants, J. Tribol., 144(7), 1-9. Doi: 10.1115/1.4053352.

D. Mei, S. Dai, T. Chen, H. Wang, and Y. Yuan. (2020). Absorption of fuel containing esters on iron surface based on molecular simulation and its effects on lubricity. Energy Sources, Part A Recover. Util. Environ. Eff., 1-12. Doi: 10.1080/15567036.2020.1783395.

Downloads

Published

27-08-2023