Antimicrobial Activity of Syzygium polyanthum Wight (Walp.) Extract against Foodborne Pathogens in Food: A Potential Antimicrobial Agent for Natural Food Washing Solution


  • Suzita Ramli Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia
  • Jun Xian Wong ᵃDepartment of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia; ᵇDepartment of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Yaya Rukayadi Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia



Natural antimicrobial activity, S. polyanthum leaves, foodborne pathogens, raw food, food washing solution


Developments of natural preservatives derived from plant sources instead of chemical preservatives are gaining more attention nowadays. In this study, the effect of Syzygium polyanthum (Wight) Walp.] leaves extract against foodborne pathogens on raw chicken meat and cherry tomato was evaluated using the method of washing treatment by extract solution. Results found that Syzygium polyanthum (Wight) Walp. leaves extract have significant effect (P <0.05) in reduction of foodborne pathogens in all tested food samples at 5 mg/mL of extract for 5 min soaking period. Moreover, S. polyanthum extract (10 mg/ml and 50 mg/ml) able to reduce yeast, mould and E. coli in raw meat chicken after storing at 4 ± 2°C for 5 days and reduce Pseudomonas species in cherry tomato after storing for 15 days at 4 ± 2°C. Antimicrobial property of S. polyanthum might be due to the presence of pyrogallol, β-Sitosterol, phytol, hexadecanoic acid, gallic acid, bergenin, quercetin 3-(6''-galloylgalactoside), madecassic acid, quillaic acid and asiatic acid that were detected by GC-MS and LC-MS. In conclusion, S. polyanthum extract exhibited antimicrobial activity, thus it has potential to be developed as antimicrobial agent for natural food washing solution.


Lulietto, M. F., Sechi, P., Borgogni, E., & Cenci-Goga, B. T. (2015). Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Ital. J. Anim. Sci., 14, 316-326.

Lorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main groups of microorganisms of relevance for food safety and stability. Innovative Technologies for Food Preservation. Massachusetts, United States: Academic Press.

Wong, J. X., Ramli, S., & Chen, S. N. (2021). Assessment of toxic effect of Centella asiatica extract and its application as natural preservative in fresh cut mango, pear and cabbage. J. Food Process Pres., 45(10), e15824.

Wong, J. X., & Ramli, S. (2021). Standard Food Safety Practices from Receiving to Cleaning in the Restaurant. Pennsylvania, United States: IGI Global Publishing Company.

Ding, T., Rahman, S. M. E., & Oh, D. (2011). Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control, 22(2), 318-322.

Putnik, P., Pavlić, B., Šojić, B., Zavadlav, S., Žuntar, I., Kao, L., Kitonić, D., & Kovačević, D. B. (2020). Innovative hurdle technologies for the preservation of functional fruit juices. Foods, 9, 699.

Harjan, I., Harjan, A., Haider, M., & Zaidan, K. (2019) health effects of chlorinated water: A review article. Pakistan J. Biotech., 16(3), 163-167.

Sharif, Z., Mustapha, F., Jai, J., Mohd Yusof, N., & Zaki, N. (2017). Review on methods for preservation and natural preservatives for extending the food longevity. Chem. Eng. Res. Bull., 19, 145-143.

Ndjateu, F. S. T., Tsafack, R. B. N., Nganou, B. K., Awouafack, M. D., Wabo, H. K., Tene, M., Tane, P., & Eloff, J. N. (2014). Antimicrobial and antioxidant activities of extractsand ten compounds from three Cameroonian medicinal plants: Dissotis perkinsiae (Melastomaceae), Adenocarpus mannii (Fabaceae) and Barteria fistulosa (Passifloraceae). S. Afr J. BOT., 91, 37-42.

Limsuwan, S., Subhadhirasakul, S., & Voravuthikunchai, S. P. (2009). Medicinal plants with significant activity against important pathogenic bacteria. Pharm. Biol., 47, 683-689.

Wong, J. X., Ramli, S., Rukayadi, Y., Juhari, N. K. K., Radu, S., & Wahid, N. B. A. (2022). Antifungal activity of ethanolic extract of Syzygium polyanthum (Wight) Walp. leaves extract against several types of filamentous fungi and Candida species. Malays. J. Microsc., 18(1), 136-146.

Perumal, S., Mahmud, R., Piaru, S. P., Cai, L. W., & Ramanathan, S. (2012). Potential antiradical activity and cytotoxicity assessment of Ziziphus mauritiana and Syzygium polyanthum. Int. J. Pharmacol., 8, 535-541.

Othman, A., Mukhtar, N. J., Ismail, N. S., & Sui, K. C. (2014). Phenolics, flavonoids content and antioxidant activities of 4 Malaysian herbal plants. Int. Food Res. J., 21, 759-766.

Lau, K. Y., Zainin, N. S., Abas, F., & Rukayadi, Y. 2014. Antibacterial and sporicidal activity of Eugenia polyantha Wight against Bacillus cereus and Bacillus subtilis. Int. J. Curr. Microbiol. Appl. Sci., 3(12), 499-510.

Ismail, A., Mohamed, M., Sulaiman, S. A., & Wan Ahmad, W. A. N. (2013). Autonomic nervous system mediates the hypotensive effects of aqueous and residual methanolic extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum leaves in anaesthetized rats. Evid. Complement. Altern. Med., 201, 1-17.

Sumono, A., & Wulan, A. S. (2008). The use of bay leaf (Eugenia polyantha Wight) in dentistry. Dentistry J., 41(3), 147-150.

Abd Rahim, E. N. A., Ismail, A., Omar, M. N., Rahmat, U. N., & Wan Ahmad, W. A. N. (2018). GC-MS analysis of phytochemical compounds in Syzygium polyanthum leaves extracted using ultrasound-assisted method. Pharmacol. J., 10(1), 110-119.

Yusoff, N. A. H., Noor, N. F., & Rukayadi, Y. (2015). Effects of Cosmos caudatus Kunth. (Ulam raja) extract on microflora in raw chicken meat. Int. J. Curr. Microbiol. App. Sci., 4(2), 426-435.

Rukayadi, Y., Shim, J. S., & Hwang, J. K. (2008). Screening of Thai medicinal plants for anticandidal activity. Mycoses, 51(4), 308-312.

Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. J. Food Sci. Technol., 49(4), 510-514.

Lee, M. (2009). Basic skills in interpreting laboratory data (4th ed). Maryland, United States: American Society of Health-System Pharmacist, Inc.

Leininger, D. J., Roberson, J. R., & Elvinger, F. (2001). Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. Vet. Diagn. Invest., 13(3), 273-275.

Spacil, Z., Novakova, L., & Solich, P. (2010). Comparison of positive and negative ion detection of tea catechins using tandem mass spectrometry and ultrahigh performance liquid chromatography. Food Chem., 123(2), 535-541.

Biswas, D., & Roymon, M. (2013). G. LC/ TOF/ ESI/ MS based detection of bioactive compounds present in leaf and bark extract of Acacia arabica. Recent Res. Sci. Technol. 5(4), 37-40.

Kocacaliskan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. J. Biosci., 61, 639-642.

Namuli, A., Abdullah, N., Sieo, C. C., Zuhainis, S. W., & Oskoueian, E. (2011). Phytochemical compounds and antibacterial activity of Jatropha curcas Linn. extracts. J. Med. Plant Res., 5, 3982-3990.

Odiba, J. O., Aliyu, M. M., Halimatu, S. H., Sani, M. Y., & Ephraim, I. O. (2014). Antimicrobial activity of isolated Stigmast- 5-en-3β-ol (β-Sitosterol) from honeybee propolis from North-Western, Nigeria. Int. J. Pharm. Sci., 5(12), 345-350.

Krishnan, K. R., James, F., & Mohan, A. (2016). Isolation and characterization of n-hexadecanoic acid from Canthium parviflorum leaves. J. Chem. Pharm., 8, 614-617.

Ventaka-raman, B., Samuel, L. A., Pardha-Saradhi, M., Narashimha-Rao, B., Naga, V. K. A., Sudhakar, M., & Radhakrishnan, T. M. (2012). Antibacterial, antioxidant activity and GCMS analysis Euphatorium odoratum. Asian J. Pharm. Clin. Res., 5(2), 99-106.

Fu, L., Lu, W. Q., & Zhou, X. M. (2016). Phenolic compounds and in vitro antibacterial and antioxidant activities of three tropic fruits: persimmon, guava, and sweetsop. BioMed. Res. Int., 2016, 1-9.

Karunai Raj, M. K., Duraipandiyan, V., Agustin, P., & Ignacimuthu, S. (2012). Antimicrobial activity of bergenin isolated from Peltophorum pterocarpum DC. flowers. Asian Pac. J. Trop. Biomed., 2(2), 901-904.

Liu, W. H., Liua, T. C., and Mong, M. C. (2015). Antibacterial effects and action modes of asiatic acid. Biomedicine, 5(3), 22-29.

James, T. J., & Dubery, I. A. (2009). Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.). Molecules, 14(10), 3922-3941.

Nitiema, L.W., Savadogo, A., Simpore, J., Dianou. D., & Traore, A. S. (2012). In vitro antimicrobial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. Int. J. Microbiol. Res., 3(3), 183-187.

Lynch, M. F., Tauxe, R. V., & Hedberg, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol. Infect., 137(3), 307-315.

Chang, J. M., & Fang, T.J. (2007) Survival of Escherichia coli O157:H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157:H7. Food Microbiol., 24, 745-751.

Doyle, M. P., & Erickson, M.C. (2006). Reducing the carriage of foodborne pathogens in livestock and poultry. Poult. Sci., 85(6), 960-973.

Razzaq, R., Farzana, K., Mahmood, S., & Murtaza, G. (2014). Microbiological analysis of street vended vegetables in Multan city, Pakistan: A public health concern. Pak. J. Zool., 46(4), 1133-1138.

Hong, C. K., Seo, Y. H., Choi, C. M., Hwang, I. S., & Kim, M. S. (2012). Microbial quality of fresh vegetables and fruits in Seoul, Korea. J. Food Hyg. Saf., 27(1), 24-29.

Akbar, A., & Anal, A. K. (2013). Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat. Asian Pac. J. Trop. Med., 3(2), 163-168.

Cohen, N., Ennaji, H., Bouchrif, B., Hassar, B., & Karib, H. (2007). Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco). J. Appl. Poult. Res., 16, 502-508.

Gill, C. O., and Badoni. M. (2005). Recovery of bacteria from poultry carcasses by rinsing, swabbing or excision of skin. Food Microbiol., 22(1), 101-107.

Al-Dughaym, A. M., & Altabari. A. F. (2010). Safety and quality of some chicken meat products in Al-Ahsa markets-Saudi Arabia. Saudi J. Biol. Sci., 17(1), 37-42.

Ukuku, D. O., & Fett, W. E. (2004). Method of applying sanitizers and sample preparation affects recovery of native microflora and Salmonella on whole cantaloupe surfaces. J. Food Protect., 67, 999-1004.

Brackett, R. E. 1992. Shelf stability and safety of fresh produce as influenced by sanitation and disinfection. J. Food Protect. 55(10): 808-814. Doi: 10.4315/0362-028X-55.10.808

Klaiber, R. G., Baur, S., Wolf, G., Hammes, W. P., & Carle, R. (2005). Quality of minimally processed carrots as affected by warm water washing and chlorination. Innov. Food Sci. Emerg. Technol., 6(3), 351-362.

Gil, M. I., Selma, M. V., Lopez-Galvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash disinfection: problems and solutions. Int. J. Food Microbiol., 134(1-2), 37-45.

Abadias, M., Canamas, T. P., Asensio, A., Anguera, M., & Vinas, I. (2006). Microbial quality of commercial ‘Golden Delicious’ apples throughout production and shelf-life of Lleda (Catalonia, Spain). Int. J. Food Microbiol., 108(3), 404-409.

Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram, O., & Yetim, H. (2011). Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol., 148(1), 30-35.

Lazarova, R., & Krystallis, A. (2010). Consumer’s perception of food quality and its relation to the choice of food. Master Thesis. University Aarhus, Vennelyst Blvd, Aarhus Demark.

Hwang, C. A. (2016). Effect of mayonnaise pH and storage temperature on the behavior of Listeria monocytogenes in ham salad and potato salad. J. Food Prot., 68(8), 1628-1634.

Morshedy, A. E. M. A., & Sallam, K. I. (2009). Improving the microbial quality and shelf life of chicken carcasses by trisodium phosphate and lactic acid dipping. Int. J. Poult. Sci., 8(7), 645-650.

Fallah, A. A., Saei-Dehkordi, S., & Rahnama, M. (2010). Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken. Radiat. Phys. Chem., 79(10), 1073-1078.

Pizato, S., Cortez-Vega, W. R., & Prentice, C. (2015). Quality assessment of cooked chicken breast meat at different storage temperatures. Int. Food Res. J., 22(1), 143-154.

Vinha, A. F., Barreira, S. V. P., Castro, A., Costa, C., & Oliveira. M. B. P. P. (2013). Influence of the storage conditions on the physicochemical properties, antioxidant activity and microbial flora of different tomato (Lycopersicon esculentum L.) cultivars. J. Agric. Sci., 5(2), 119-128.

Beal, S. L. (2001). Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn., 28, 481-504.

G omez, F., Igual, M., Camacho, M. M., & Pagan. M. J. (2013). Effect of the addition of plant extracts on the microbiota of minimally processed strawberry jam and its physicochemical and sensorial properties. CyTA-J. Food, 11(2), 171-178.

Srivastava, R. P., & Kumar, S. (2002). Fruit and Vegetable Preservation: Principles and Practices. Lucknow, India: International Book Distributing Company.

Whitman, W. C., Johnson, W. M., & Tomczyk, J. A. (2005). Refrigeration and Air Conditioning Technology (5th ed). New Delhi, India: Thomson Publications.

Geiges, O. (1996). Microbial processes in frozen food. Adv. Space Res., 18(12), 109-118.

Tanoj, K.S and Keith,R. C. (2003). The shelf life of foods. An overview: Freshness and Shelf Life of Foods ACS Symposium Series. Washington, United States: American Chemical Society, p. 10-14.