The First Next-Generation Sequencing Metabarcoding Dataset on Faecal Bacterial Diversity from the Southern River Terrapin, Batagur affinis ssp.

Authors

  • Mohd Hairul Mohd Salleh ᵃDepartment of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; ᵇRoyal Malaysian Customs Department, Persiaran Perdana, Presint 2, 62596 Putrajaya, Malaysia
  • Yuzine Esa ᵃDepartment of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; ᶜInternational Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Lot 960 Jalan Kemang 6, 71050 Port Dickson, Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n1.2802

Keywords:

NGS metabarcoding dataset, Tuntung, bacteria, 16S rRNA, V3-V4 gene region

Abstract

The Southern River terrapin, Batagur affinis ssp., has the first data on faecal bacterial diversity from next-generation sequencing (NGS). This dataset describes the bacterial diversity of the Southern River terrapin, locally known as Tuntung. Batagur affinis spp. are freshwater turtles listed as critically endangered on the International Union for Conservation of Nature (IUCN) Red List since 2000. This is the first dataset on the faecal bacterial diversity of Batagur affinis ssp., and the data provided here can be used to comprehensively understand the microbiome's community composition. Seven faeces samples were collected aseptically from captive (N = 5) and wild (N = 2) adult B. affinis ssp. while crossing Peninsular Malaysia's east and west coasts. The data was acquired by metabarcoding using 16S rRNA. The amplicons were further analysed using the SILVA and DADA2 pipelines. The V3-V4 of the 16S rRNA gene region was amplified, and the amplicons were sequenced on the Illumina MiSeq system. In total, 297 bacterial communities' taxonomic profiles (phylum to genus) have been determined. The data for this metagenome can be found in the BioSample Submission Portal as Bio-Project PRJNA767629 and Sequence Read Archive (SRA) accession numbers from SAMN21919713 to SAMN21919722.

References

Baird, D. J., HajibabeiI, M. (2012). Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology, 21, 2039-2044. https://doi.org/10.1111/j.1365-294X.2012.05519.x.

Winand, R., Bogaerts, B., Hoffman, S., Lefevre, L., Delvoye, M., Van Braekel, J., Fu, Q., Roosens, N. H., De Keersmaecker, S. C. & Vanneste, K. (2020). Targeting the 16S rRNA gene for bacterial identification in complex mixed samples: comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies. International Journal of Molecular Sciences, 21, 298. https://doi.org/10.3390/ijms21010298.

Ando, H., Mukai, H., Komura, T., Dewi, T., Ando, M., Isagi, Y. (2020). Methodological trends and perspectives of animal dietary studies by non-invasive fecal DNA metabarcoding. Environmental DNA, 2(4), 391-406. https://doi.org/10.1002/edn3.117.

Ahasan, M. S., Kinobe, R., Elliott, L., Owens, L., Scott, J. (2019). Bacteriophage versus antibiotic therapy on gut bacterial communities of juvenile green turtle, Chelonia mydas. Environ Microbiol. https://doi.org/10.1111/1462-2920.14644.

Arizza, V., Vecchioni, L., Caracappa, S., Sciurba, G., Berlinghieri, F. (2019). New insights into the gut microbiome in loggerhead sea turtles Caretta caretta stranded on the Mediterranean coast. PLoS One. 14:e0220329. https://doi.org/10.1371/journal.pone.0220329.

Biagi, E., D’Amico, F., Soverini, M., Angelini, V., Barone, M. (2019). Fecal bacterial communities from Mediterranean loggerhead sea turtles (Caretta caretta). Environ Microbiol Rep, 11, 361-371. https://doi.org/10.1111/1758-2229.12683.

Mohd Salleh, M. H., Esa, Y., Ngalimat, M. S., Chen, P. N. (2022). Faecal DNA metabarcoding reveals novel bacterial community patterns of critically endangered Southern River Terrapin, Batagur affinis. PeerJ, 10, e12970. https://doi.org/10.7717/peerj.12970.

Valentini, A., Pompanon, F., Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology and Evolution, 24, 110-117. https://doi.org/10.1016/j.tree.2008.09.011.

Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N., Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing? Molecular Ecology Resources, 21(8), 1931-1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x.

Ducotterd, C., Crovadore, J., Lefort, F., Rubin, J. F., Ursenbacher, S. (2021). A powerful long metabarcoding method for the determination of complex diets from fecal analysis of the European pond turtle (Emys orbicularis, L. 1758). Molecular Ecology Resources, 21(2), 433-447. https://doi.org/10.1111/1755-0998.13277.

Goldberg, A. R., Conway, C. J., Tank, D. C., Andrews, K. R., Gour, D. S, Waits, L. P. (2020). Diet of a rare herbivore based on DNA metabarcoding of feces: Selection, seasonality, and survival. Ecology and Evolution, 10(14), 7627-7643. https://doi.org/10.1002/ece3.6488.

Ingala, M. R., Simmons, N. B., Wultsch, C., Krampis, K., Provost, K. L., Perkins, S. L. (2021). Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecology and Evolution, 11, 7474-7491. DOI:10.1002/ece3.7579.

Zemb, O., Achard, C. S., Hamelin, J., De Almeida, M. L., Gabinaud, B., Cauquil, L., Verschuren, L. M. & Godon, J. J. 2020. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A rapid normalisation of relative abundances by quantitative PCR targeting a 16S rRNA gene spike‐in standard. Microbiologyopen, 9(3), p.e977. https://doi.org/10.1002/mbo3.977.

Zhang, J., Ding, X., Guan, R., Zhu, C., Xu, C., Zhu, B., Zhang, H., Xiong, Z., Xue, Y., Tu, J. & Lu, Z. (2018). Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake. Science of the Total Environment, 618, 1254-1267. https://doi.org/10.1016/j.scitotenv.2017.09.228.

Bushnell, B. (2018). BBduk version 39.92. [software]. Available from: https://sourceforge.net/projects/bbmap/. Retrieved on 14/05/2021.

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E.K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I. & Huttley, G. A. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303.

Lawley, B., Tannock, G. W. (2017). Analysis of 16S rRNA gene amplicon sequences using the QIIME software package. In Oral Biology (pp. 153-163). Humana Press, New York, NY.

Callahan, B. J, McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869.

Callahan, B., McMurdie, P., Holmes, S. (2019). DADA2 pipeline tutorial (1.8). Retrieved May 26, 2020, from https://benjjneb.github.io/dada2/tutorial_1_8.html.

Nearing, J. T., Douglas, G. M., Comeau, A. M., Langille, M. G. I. (2018). Denoising the denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ, 6, e5364. https://doi.org/10.7717/peerj.5364.

International Union for Conservation of Nature, International Union for Conservation of Nature, Natural Resources. Species Survival Commission, & IUCN Species Survival Commission. (2001). IUCN Red List categories and criteria. IUCN.

Mohd Salleh, M. H., Esa, Y., Salleh, S. M., & Mohd Sah, S. A. (2022). Turtles in Malaysia: A Review of Conservation Status and a Call for Research. Animals, 12(17), 2184. http://dx.doi.org/10.3390/ani12172184.

Stanford, C. B., Iverson, J. B., Rhodin, A. G., van Dijk, P. P., Mittermeier, R. A., Kuchling, G., Berry, K. H., Bertolero, A., Bjorndal, K. A., Blanck, T. E. & Buhlmann, K. A. (2020). Turtles and tortoises are in trouble. Current Biology, 30(12), R721-R735. https://doi.org/10.1016/j.cub.2020.04.088.

Hugon, P., Lagier, J. C., Colson, P., Bittar, F., Raoult, D. (2017). Repertoire of human gut microbes. Microbial Pathogenesis, 106, 103-112. https://doi.org/10.1016/j.micpath.2016.06.020.

Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R., Gordon, JI. (2008). Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 6, 776-788. DOI: 10.1038/nrmicro1978.

Abdelrhman, K. F. A., Bacci, G., Mancusi, C., Mengoni, A., Serena, F., Ugolini, A. (2016). A First Insight into the Gut Microbiota of the Sea Turtle Caretta caretta. Frontiers Microbiology, 7, 1060. DOI: 10.3389/fmicb.2016.01060.

Costello, E. K., Gordon, J. I., Secor, S. M., Knight, R. (2010). Postprandial remodeling of the gut microbiota in Burmese pythons. ISME Journal, 4, 1375-1385. DOI: 10.1038/ismej.2010.71.

Keenan, S. W., Engel, A. S., Elsey, R. M. (2013). The alligator gut microbiome and implications for archosaur symbioses. Scientific Report, 3, 2877. DOI: 10.1038/srep02877.

Downloads

Published

25-02-2023