The development of thermal lattice Boltzmann models in incompressible limit


  • Nor Azwadi Che Sidik



Distribution function, Thermal lattice Boltzmann, Porous Couette flow, Lid-driven cavity flow,


In this paper, an incompressible two-dimensional (2-D) and three-dimensional (3-D) thermohydrodynamics for the
lattice Boltzmann scheme are developed. The basic idea is to solve the velocity field and the temperature field using
two different distribution functions. A derivation of the lattice Boltzmann scheme from the continuous Boltzmann
equation for 2-D is discussed in detail. By using the same procedure as in the derivation of the discretised density
distribution function, we found that new lattice of four-velocity (2-D) and eight-velocity (3-D) models for internal energy
density distribution function can be developed where the viscous and compressive heating effects are negligible.
These models are validated by the numerical simulation of the 2-D porous plate Couette flow problem where the
analytical solution exists and the natural convection flows in a cubic cavity.


U. Frish, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett., 56, 1505 (1986).

S. Chen and G. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).

G. Breyiannis and D. Valougeorgis, Phys. Rev. E, 69, 065702 (2004).

Halliday and C. M. Care, Phys. Rev. E, 53, 1602 (1996).

L. Jonas, B. Chopard, S. Succi and F. Toschi, Phys. A, 362, 6 (2006).

G. McNamara and B. Alder, Phys. A, 194, 218 (1993).

H. Chen and C. Teixeira, Comp. Phys. Comm., 129, 21 (2000).

C. Cercignani, The Boltzmann equations and its application, in Applied Mathematical Sciences (Springerverlag, New York, 1988).

X. Shan, Phys. Rev. E, 55, 2780 (1997).

L. S. Luo and X. He, Phys. Rev. E, 55, R6333 (1997).

X. He, S. Shan and G. D. Doolen, J. Comp. Phys., 146, 282 (1998).

P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 94, 511 (1954).

S. Harris, An Introduction to the Theory of the Boltzmann Equation (Holt, Rinehart and Winston, New York, 1971).

C. Cercignani, The Boltzmann equations and its application, in Applied Mathematical Sciences (Springer-Verlag, New York, 1988).

Y. Peng, C. Shu and Y. T. Chew, Phys. Rev. E, 68, 020671 (2003).

U. Frish, B. Hasslacher, D. Humieres, P. Lallemand, J. P. Rivet and Y. Pomeau, Complex Syst., 1, 649(1987).

Z. L. Guo, Y. Shi and T. S. Zhao, Phys. Rev. E, 70, 066310 (2004).

P. J. Davis and P. Rabinowitz, Method of Numerical Integration (Academic Press, New York, 1984).

L. S. Luo and X. He, J. Stats. Phys., 88, 927 (1997).

Q. Zuo and X. He, Phys. Fluids, 9, 1591 (1997).

C. S. Azwadi and T. Takahiko, Intl. J. Mod. Phys. B, 20, 2437 (2006).

E. Tric, G. Labrosse and M. Betrouni, Int. J. Heat Mass Trans., 43, 4043 (2000).