Isolation and Characterisation of Bacteria and Fungus from the Intestine of Sea Cucumber Acaudina molpadioides


  • Fatmawati Lambuk Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
  • Nurzafirah Mazlan Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Thung Tze Young Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
  • Siti Marwanis Anua School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
  • Ruzaina Ishak Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia



Acaudina molpadioides, antimicrobial activity, bacteria, fungi, sea cucumber


Acaudina molpadioides or locally known as ‘beronok’ is a high valued sea cucumber that is widely distributed in the muddy shores in the west coast Peninsular Malaysia and being consumed by the local people as traditional healthy delicacies. They are made into dishes and are usually consumed raw as ‘kerabu’. The aim of this study was to isolate and characterise the bacteria and fungus from the intestine of A. molpadioides using standard method for biochemical tests, safety assessments and molecular identification. A total of 100 samples were obtained randomly from Pulau Langkawi, Malaysia and 1642 isolates were obtained from the intestine. Biochemical tests, safety evaluation and molecular identification were performed. Six strains (AM8h, AM47e, AM59a, AM67d, AM80d, and AM84d1) were selected for characterisation as they showed distinct morphology and from the biochemical tests. Further molecular identification showed the strains were identified as Priestia megaterium, Carnobacterium maltaromaticum, Bacillus tropicus, Staphylococcus saprophyticus, Bacillus cereus, and Yarrowia lipolytica (GenBank accession number: MZ947169, MZ934727, MZ947170, MZ934728, MZ934726, and MZ956769). The results indicated that both bacteria and fungus were presence in the intestine of A. molpadioides, hence there is a need for adequate measures in consuming this sea cucumber raw.


Rahman, M. A., & Yusoff, F. M. (2017). Sea cucumber fisheries: market potential, trade, utilization and challenges for expanding the production in the South-East Asia. International Journal of Advances in Chemical Engineering and Biological Sciences, 4(1), 26-30.

Khotimchencko, Y. (2018). Pharmacological potential of sea cucumber. International Journal of Molecular Sciences, 19,1342.

Choo, P. S., Conand, C., & Vaitilingon, D. (2016). Kerabu beronok (acaudiana salad) – signature appetiser in Langkawi Island, Malaysia. SPC Beche-de-mer Information Bulletin, 36,101-105.

Wen, B., Gao, Q. F., Dong, S. L., Hou, Y. R., Yu, H. B., & Li, W. D. (2016). Effects of different feed ingredients on growth, fatty acid profiles, lipid peroxidation and aminotransferases activities of sea cucumber Apostichopus japonicas (Selenka). Aquaculture, 454, 176-183.

Pangestuti, R., & Arifin, Z. (2017). Medicinal and health benefit effects of functional sea cucumbers. Journal of Traditional and Complementary Medicine, 8(3), 341-351.

Sun, F., & Xu, Z. (2021). Significant differences in intestinal microbial communities in aquatic animals from an aquaculture area. Journal of Marine Science and Engineering, 9, 104.

Suen, C. F. L. W., & De Cruz, P. (2019). The gastrointestinal tract: a brief introduction to healthy digestion. psychogastroenterology for adults (1st Ed). Routledge, United Kingdom: Knowles, S. R., Keefer, L., Mikocka-Walus, A. A.

Selaledi, L. A., Hassan, M. Z., Manyelo, T. G., & Mabelebele, M. (2020). The current status of the alternative use to antibiotic in poultry production: an African perspective. Antibiotics, 9(9), 594.

Pagán-Jiménez, M., Ruiz-Calderón, J. F., Dominguez-Bello, M. G., García-Arrarás, J. E. (2019). Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS One, 14(1), e0208011.

Tankeshwar, A. (2020). Tryptic soy agar, TSA. Microbe Online. Retrieved from

Amin, M., Adams, M., Bolch, C. J. S., Burke, C. M. (2017). In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of atlantic salmon (Salmo salar) as Probiont Candidates. Aquaculture International 25, 485-498.

Ali, A. A. (2011). Isolation and identification of lactic acid bacteria isolated from traditional drinking yoghurt in Khartoum State, Sudan. Current Research in Bacteriology, 4(1), 16-22.

Ismail, Y. S., Yulvisar, C., Mazhitov, B. (2018). Characterization of lactic acid bacteria from local cow’s milk Kefir. IOP Conference Series: Earth and Environmental Science, 130.

Aryal, S. (2018). Catalase test – Principle, uses, procedure, result interpretation with precautions. Microbiology Retrieved from

Tankeshwar, A. (2021). Gram staining: Principle, procedure, results. Microbe Online. Retrieved from

Aryal, S. (2019). Fermentation test – Principle, procedure, uses and interpretation. Microbiology

Aryal, S. (2018). Blood agar – composition, preparation, uses and pictures. Microbioogy Retrieved from

Tendecia, E. A. (2004). Disk diffusion method. Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and Environment. SEAFDEC. Retrieved from

Vivantis (n. d.) GF-1 bacterial DNA extraction kit. Retrieved from

Muryani, M. Y. I., Salwany, M. Y. I., Ghazali, A. R., Hing, H. L., & Fadilah, R. N. (2017). Identification and characterization of the lactic acid bacteria isolated from Malaysian fermented fish (pekasam). International Food Research Journal, 24(2), 868-875.

Andriani, Y., Rochima, E., Safitri, R., & Rahayuningsih, S. R. (2017). Characterization of Bacillus megaterium and Bacillus mycoides bacteria as probiotic bacteria in fish and shrimp feed. ICSAFS Conference Proceedings, 127-135.

Gupta, R. S., Patel, S., Saini, N., Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the subtilis and cereus clades of species. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5753-5798.

von Cosmos, N. H., Watson, B. A., Fellman, J. K., Mattinson, D. S., & Edwards, C. G. (2017). Characterization of Bacillus megaterium, Bacillus pumilus, and Paenibacillus polymyxa Isolated from a Pinot Noir Wine from Western Washington State. Food Microbiology, 67, 11-16.

Al-Thubiani, A. S. A., Maher, Y. A., Fathi, A., Abourehab, M. A. S., Alarjah, M., Khan, M. S. A., & Al-Ghamdi, S. B. (2018). Identification and characterization of a novel antimicrobioal peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharmaceutical Journal, 26, 1089-1097.

Dobrzanski, T., Gravina, F., Steckling, B., Olchanheski, L. R., Sprenger, R. F., Espírito Santo, B. C., Galvão, C. W., Reche, P. M., Prestes, R. A., Pileggi, S. A. V., Campos, F. R., Azevedo, R. A., Sadowsky, M. J., Beltrame, F. L., & Pileggi, M. (2018). Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione. PLoS One, 13(4).

Biedendieck, R., Knuuti, T., Moore, S. J., & Jahn, D. (2021). The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology. Applied Microbiology and Biotechnology, 105, 5719-5737.

Jianzhong, Q. (2019). A kind of bioactivation enzymatic hydrolysis phosphorus agent and preparation method thereof containing Bacillus megaterium. China Patent, CN109134083.

Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Zhang, K., Prakash, G. S., Song, D. P., & Arun, A. (2020). Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel, 271, 117522.

Puentes, C., Girardeau, A., Passot, S., Fonseca, F., & Trelea, I. C. (2021). Dynamic modeling of Carnobacterium maltaromaticum CNCM I-3298 growth and metabolite production and model-based process optimization. Foods, 10(8),1922.

Girardeau, A., Puentes, C., Keravec, S., Peteuil, P., Trelea, I. C., & Fonseca, F. (2019). Influence of culture conditions on the technological properties of Carnobacterium maltaromaticum CNCM I-3298 starters. Journal of Applied Microbiology, 126(5),1468-1479.

Danielski, G. M., Imazaki, P. H., Cavalari, C. M. A., Daube, G., Clinquart, A., & Macedo, R. E. F. (2020). Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science, 162, 108035.

Lo, C. K. L., & Sheth, P. M. (2021). Carnobacterium inhibens Isolated in blood culture of an immunocompromised, metastatic cancer patient: a case report and literature review. BMC Infectious Diseases, 21(1), 403.

Ramia, N., El Kheir, S., Taha, S., Mangavel, C., Revol-Junelles, A., & Borges, F. (2019). Multilocus sequence typing of Carnobacterium maltaromaticum strains associated with fish disease and dairy products. Journal of Applied Microbiology, 126, 377-387.

Roh, H. J., Kim, B. S., Lee, M. K., Park, C. I., & Kim, D. H. (2020). Genome-wide comparison of Carnobacterium maltaromaticum derived from diseased fish harbouring important virulence-related genes. Journal of Fish Diseases, 43(9), 1029-1037.

Moniz, K., Walker, V. K., & Shah, V. (2021). Antibiotic resistance in mucosal bacteria from high artic migratory salmonids. Environmental Microbiology Reports.

BackDive. (2020). Bacillus tropicus N24 is a facultative anaerobe, spore-forming, Gram-positive bacterium that forms circular colonies and was isolated from sediment of the South China Sea. Retrieved from

Samanta, S., Datta, D., & Halder, G. (2020). Biodegradation efficacy of soil inherent novel sp. Bacillus tropicus (MK3138648) onto low density polyethylene matrix. Journal of Polymer Research, 27, 324.

Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, 802-812.

Induresmi, S., Prasad, P. S., William, J. K., Joy, M., & Erumalla, V. (2020). Non-recombinant mutagenesis of Bacillus tropicus CUIMW1718 for hyper production of Alginase. Mapana. Journal of Science, 19(4), 17-29.

De Paiva-Santos, W., De Sousa, V. S., & De Marval, M. G. (2018). Occurrence of Virulence-associated genes among Staphylococcus saprophyticus Isolated from different sources. Microbial Pathogenesis, 119, 9-11.

Lawal, O. U., Fraqueza, M. J., Bouchami, O., Worning, P., Bartels, M. D., Goncalves, M. L., Paixao, P., Goncalves, E., Toscano, C., Empel, J., Urbas, M., Dominguez, M. A., Westh, H., Lencastre, H., & Miragaia, M. (2021). Foodborne origin and local and global spread of Staphylococcus saprophyticus causing human urinary tract infections. Emerging Infectious Diseases, 27, 3.

De Sousa, V. S., Da-Silva, A. P., Sorenson, L., Paschoal, R. P., Rabello, R. F., Campana, E. H., Pinheiro, M. S., Dos Santos, L. O. F., Martins, N., Botelho, A. C. N., Picao, R. C., Fracalanzza, S. E. L., Riley, L. W., Sensabaugh, G., & Moreira, B. M. (2017). Staphylococcus saprophyticus recovered from humans, food and recreational waters in Rio de Janeiro, Brazil. International Journal of Microbiology, 2017, 1-11.

Johnson, D. I. (2017). Staphylococcus spp. Bacterial Pathogens and Their Virulence Factors, (Chapter 9) 127-149.

Mani, P., Dineshkumar, G., Jayaseelan, T., Deepalakshmi, K., Kumar, C. G., & Balan, S. S. (2016). Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15. 3 Biotechnology, 6, 163.

Nguyen, A. T., & Tallent, S. M. (2019). Screening food for Bacillus cereus toxins using whole genome sequencing. Food Microbiology, 78, 164-170.

Zhao, S., Chen, J., Fei, P., Feng, H., Wang, Y., Ali, M. A., Li, S., Jing, H., & Yang, W. (2020). Prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products in China. Journal of Dairy Science, 103, 3994-4001.

Holzel, C. S., Tetens, J. L., & Schwaiger, K. (2018). Unraveling the role of vegetables in spreading antimicrobial-resistant bacteria: a need for quantitative risk assessment. Foodborne Pathogens and Disease, 15(11), 671-688.

Asfour, H. A., Eid, R. H., El-Wakeel, S. A., Behour, T. S., & Darwish, S. F. (2021). Phenotypic and genotypic investigation of yeast species associated with bovine subclinical mastitis with a special reference to their virulence characteristics. International Journal of Veterinary Science, 11(1), 49-58.

Zieniuk, B., & Fabiszewska, A. (2018). Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview. World Journal of Microbiology and Biotechnology, 35, 10.

Lubuta, P., Workman, C., Mortensen, U. H., Andersen, M. R., Regenberg, B., & Morrissej, J. (2018). Physiology and metabolism of Yarrowia lipolytica for the utilization of alternative carbon substrates. Technical University of Denmark. Retrieved from

Zhao, Y., Chan, J. F. W., Tsang, C. C., Wang, H., Guo, D., Pan, Y., Xiao, Y., Yue, N., Kwan, C. J. H., Lau, S. K. P., Xu, Y., & Woo, P. C. Y. (2015) Clinical characteristics, laboratory identification, and in vitro antifungal susceptibility of Yarrowia (Candida) lipolytica isolates causing fungemia: a multicenter, prospective surveillance study. Journal of Clinical Microbiology, 53(11), 3639-3645.

Goncalves, F. A. G., Colen, G., & Takahashi, J. A. (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Science World Journal, 2014, 1-14.

Xu, P., Qiao, K., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences USA, 113(39), 10848-10853.

Darvishi, F., Fathi, Z., Ariana, M., & Moradi, H. (2017). Yarrowia lipolytica as a workhorse for biofuel production. Biochemical Engineering Journal, 127, 87-96.