Efficacy of Acute Oral Supplementation of Aquilaria malaccensis Leaves Aqueous Extract on Adult Female Sprague Dawley Rat Growth Performance


  • Nurul Amalina Mohamad Nasir School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
  • Asmad Kari School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
  • Mohd Nizam Haron School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
  • Connie Fay Komilus School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia




Aquilaria malaccensis, Growth Performance, Leaves Extract, Oral Toxicity, Phytochemicals


Aquilaria malaccensis belongs to the Thymelaceae family and is frequently encountered in select states of Peninsular Malaysia, notably Terengganu, Kelantan, Pahang, and Johor. Its favorable pharmacological and nutritional attributes have attracted the attention of experts in the pharmaceutical and food industries. They are currently investigating its potential as an organic substitute herb for the formulation of diverse medicinal commodities. In spite of its growing utilization as a supplementary component, it is crucial to acknowledge that improper or excessive consumption of Aquilaria malaccensis leaf extract might pose a risk of oral toxicity. To evaluate this aspect, an acute study was carried out to investigate both the immediate and delayed toxic repercussions of aqueous extract from Aquilaria malaccensis leaves on rats during a 14-day span.The study involved twenty-four female Sprague Dawley rats, divided into four groups: Control (C); 1 ml of distilled water, Treatment 1 (T1); 1 g of Aquilaria malaccensis per kg of body weight, Treatment 2 (T2); 2 g per kg of body weight, and Treatment 3 (T3); 3 g per kg of body weight. The data were analyzed using appropriate statistical methods; one-way analysis of variance (ANOVA) for parametric data and the Chi-Square test for non-parametric data.The results indicated that both T2 and T3 led to a significant increase in the mean weight of the organ  (i.e.,ovary) compared to the control group. However, no significant differences were observed among the treatment groups with regard to weekly food intake (WFI), feed conversion ratio (FCR), and body weight gain (BWG) throughout the 14-day acute oral toxicity assessment. In conclusion, this preliminary study involving female rats suggests that doses of Aquilaria malaccensis up to 3 g/kg of body weight do not result in immediate (within 3-4 hours) or delayed toxic effects over a 14-day period, as evidenced by behavioral and physical, and growth parameter assessments (weekly food intake (WFI), feed conversion ratio (FCR), and body weight gain (BWG). The study indicates that exposing the animals to Aquilaria malaccensis aqueous extract at doses of 1 g, 2 g, and 3 g/kg of body weight does not adversely affect their overall condition. No instances of mortality or severe clinical effects were observed in any of the female rats during this acute oral toxicity study.


Q. Liang, X. Chen, R. Liu, K. Xu, and H. Luo. (2023). Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-ZnxCd1-xS graphene aerogel via synergy of adsorption and photocatalysis under visible light. J. Environ. Sci. (China), 124, 360-370. Doi: 10.1016/j.jes.2021.09.037.

Y. Yu et al. (2021). Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method. J. Hazard. Mater., 404(PA), 124171. Doi: 10.1016/j.jhazmat.2020.124171.

J. Pan et al. (2015). Synthesis and SERS activity of V2O5 nanoparticles. Appl. Surf. Sci., 333, 34-38. Doi: 10.1016/j.apsusc.2015.01.242.

J. Zia, J. Kashyap, and U. Riaz. (2018). Facile synthesis of polypyrrole encapsulated V2O5 nanohybrids for visible light driven green sonophotocatalytic degradation of antibiotics. J. Mol. Liq., 272, 834-850. Doi: 10.1016/j.molliq.2018.10.091.

S. Sekar et al. (2021). Graphitic carbon-encapsulated V2O5 nanocomposites as a superb photocatalyst for crystal violet degradation. Environ. Res., September, 112201. Doi: 10.1016/j.envres.2021.112201.

L. Parashuram et al. (2022). Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol A. Chemosphere, 287(P4), 132348. Doi: 10.1016/j.chemosphere.2021.132348.

H. Zou, G. Xiao, K. Chen, and X. Peng. (2018), Noble metal-free V2O5/g-C3N4 composites for selective oxidation of olefins using hydrogen peroxide as an oxidant. Dalt. Trans., 47(38), 13565-13572. Doi: 10.1039/c8dt02765j.

M. M. Sajid et al. (2020). Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surfaces and Interfaces, 19(February), 100502. Doi: 10.1016/j.surfin.2020.100502.

A. Mishra et al. (2020). Rapid photodegradation of methylene blue dye by rGO- V2O5 nano composite. J. Alloys Compd., 842, 155746. Doi: 10.1016/j.jallcom.2020.155746.

Y. Chen et al. (2022). Tailoring defective vanadium pentoxide/reduced graphene oxide electrodes for all-vanadium-oxide asymmetric supercapacitors. Chem. Eng. J., 429(September), 132274. Doi: 10.1016/j.cej.2021.132274.

S. K. Jayaraj, V. Sadishkumar, T. Arun, and P. Thangadurai. (2018). Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process., 85(May), 122-133. Doi: 10.1016/j.mssp.2018.06.006.

D. Velpula, S. Konda, S. Vasukula, and S. C. Chidurala. (2021). Microwave radiated comparative growths of vanadium pentoxide nanostructures by green and chemical routes for energy storage applications. Mater. Today Proc., 47, 1760-1766. Doi: 10.1016/j.matpr.2021.02.599.

P. S. Lekshmi, A. Ancy, I. Jinchu, and C. O. Sreekala. 2019. Energy storage application of titanium doped vanadium pentoxide nanostructures prepared by electrospinning method. Mater. Today Proc., 33, 1420-1423. Doi: 10.1016/j.matpr.2020.06.528.

A. Badreldin et al. (2021). Surface microenvironment engineering of black V2O5 nanostructures for visible light photodegradation of methylene blue. J. Alloys Compd., 871, 159615. Doi: 10.1016/j.jallcom.2021.159615.

M. Beaula Ruby Kamalam et al. (2021). Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye. Environ. Res., 199(May), 111369. Doi: 10.1016/j.envres.2021.111369.

S. Le et al. (2021). V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Appl. Catal. B Environ., 303(September), 120903. Doi: 10.1016/j.apcatb.2021.120903.

J. Zheng and L. Zhang. (2021). One-step in situ formation of 3D hollow sphere-like V2O5 incorporated Ni3V2O8 hybrids with enhanced photocatalytic performance. J. Hazard. Mater., 416(April), 125934. Doi: 10.1016/j.jhazmat.2021.125934.

M. Preeyanghaa, V. Vinesh, and B. Neppolian. (2022). Construction of S-scheme 1D/2D rod-like g-C3N4/V2O5 heterostructure with enhanced sonophotocatalytic degradation for Tetracycline antibiotics. Chemosphere, 287(September). Doi: 10.1016/j.chemosphere.2021.132380.

M. Aslam, I. M. I. Ismail, N. Salah, S. Chandrasekaran, M. T. Qamar, and A. Hameed. (2015). Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. J. Hazard. Mater., 286(1), 127-135. Doi: 10.1016/j.jhazmat.2014.12.022.

R. Liu et al. (2020). Ag-Modified g-C3N4Prepared by a one-step calcination method for enhanced catalytic efficiency and stability. ACS Omega, 5(31), 19615-19624. Doi: 10.1021/acsomega.0c02161.

Y. Yuan et al. (2021). A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater. Today Energy, 21, 100829. Doi: 10.1016/j.mtener.2021.100829.

N. Sahraeian, F. Esmaeilzadeh, and D. Mowla. 2021. Hydrothermal synthesis of V2O5 nanospheres as catalyst for hydrogen sulfide removal from sour water. Ceram. Int., 47(1), 923-934. Doi: 10.1016/j.ceramint.2020.08.204.

A. T. Raj, K. Ramanujan, S. Thangavel, S. Gopalakrishan, N. Raghavan, and G. Venugopal. (2015). Facile synthesis of vanadium-pentoxide nanoparticles and study on their electrochemical, photocatalytic properties. J. Nanosci. Nanotechnol., 15(5), 3802-3808. Doi: 10.1166/jnn.2015.9543.

R. T. Rasheed et al. (2021). Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method. J. Therm. Anal. Calorim., 145(2), 297-307. Doi: 10.1007/s10973-020-09725-5.

L. Shao et al. (2014). Sol-gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques. Ceram. Int., 40(4), 6115-6125. Doi: 10.1016/j.ceramint.2013.11.063.

S. Deb Roy, K. Chandra Das, and S. Sankar Dhar. (2021). Conventional to green synthesis of Magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short Review. Inorg. Chem. Commun., 109050. Doi: 10.1016/j.inoche.2021.109050.

F. Mukhtar, T. Munawar, M. S. Nadeem, M. N. ur Rehman, M. Riaz, and F. Iqbal. (2021). Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys., 263(February), 124372. Doi: 10.1016/j.matchemphys.2021.124372.

Y. Inomata et al. (2020). Synthesis of bulk vanadium oxide with a large surface area using organic acids and its low-temperature NH3-SCR activity. Catal. Today, 376(June), 188-196. Doi: 10.1016/j.cattod.2020.06.041.

J. Liu et al. (2020). Conjugate Polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J. Colloid Interface Sci., 578, 402-11. Doi: 10.1016/j.jcis.2020.06.014.

S. Li et al. (2022). Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels. Chem. Eng. J., 430(P2), 132863. Doi: 10.1016/j.cej.2021.132863.

B. Jansi Rani, G. Ravi, and R. Yuvakkumar. (2020). Solvothermal optimization of V2O5 nanostructures for electrochemical energy production. AIP Conf. Proc., 2265(November), 2-6. Doi: 10.1063/5.0017751.

S. Thiagarajan, M. Thaiyan, and R. Ganesan. (2015). Physical property exploration of highly oriented V2O5 thin films prepared by electron beam evaporation. New J. Chem., 39(12), 9471-9479. Doi: 10.1039/c5nj01582k.

J. R. Koduru, L. P. Lingamdinne, J. Singh, and K. H. Choo. (2016). Effective removal of bisphenol-A (BPA) from water using a goethite/activated carbon composite. Process Saf. Environ. Prot., 103, 87-96. Doi: 10.1016/j.psep.2016.06.038.

M. Mohsen, H. Mohammadzadeh, and B. Lee. (2022). Effectiveness of MnO2 and V2O5 deposition on light fostered supercapacitor performance of WTiO2 nanotube : Novel electrodes for photo-assisted supercapacitors. Chem. Eng. J., 450(P1), 137941. Doi: 10.1016/j.cej.2022.137941.

S. Kundu, B. Satpati, T. Kar, and S. K. Pradhan. (2017). Microstructure characterization of hydrothermally synthesized PANI/V2O5·nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard. Mater., 339, 161-173. Doi: 10.1016/j.jhazmat.2017.06.034.

F. Gittleson, J. Hwang, R. C. Sekol, and A. D. Taylor. (2013). In-situ polymer coating of V2O5 nanowires for improved cathodic stability. ECS Meet. Abstr., MA2013-01(10), 504-504. Doi: 10.1149/ma2013-01/10/504.

J. Gu Heo et al. (2022). Low-temperature shift DeNOx activity of Nanoflake V2O5 loaded WO3/TiO2 as NH3-SCR catalyst. Inorg. Chem. Commun., 137(September), 109191. Doi: 10.1016/j.inoche.2021.109191.

F. Ranjbar, S. Hajati, M. Ghaedi, K. Dashtian, H. Naderi, and J. Toth. (2021). Highly selective MXene/V2O5/CuWO4-based ultra-sensitive room temperature ammonia sensor. J. Hazard. Mater., 416(May), 126196. Doi: 10.1016/j.jhazmat.2021.126196.

A. Jenifer, M. L. S. Sastri, and S. Sriram. (2021). Photocatalytic dye degradation of V2O5 Nanoparticles—An experimental and DFT analysis. Optik (Stuttg)., 243(May), 167148. Doi: 10.1016/j.ijleo.2021.167148.

G. Jaria et al. (2019). Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. J. Hazard. Mater., 370(October), 212-218. Doi: 10.1016/j.jhazmat.2018.02.053.

A. N. Oliveros, J. A. I. Pimentel, M. D. G. de Luna, S. Garcia-Segura, R. R. M. Abarca, and R. A. Doong. (2021). Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J., 403, 126213. Doi: 10.1016/j.cej.2020.126213.

C. Huang, J. Wang, M. Li, X. Lei, and Q. Wu. (2021). Construction of a novel Z-scheme V2O5/NH2-MIL-101(Fe) composite photocatalyst with enhanced photocatalytic degradation of tetracycline. Solid State Sci., 117(August), 1-8. Doi: 10.1016/j.solidstatesciences.2021.106611.

A. Tarafdar et al. (2022). The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater. 423(PA), 127097. Doi: 10.1016/j.jhazmat.2021.127097.