Blend of Multi-Walled Carbon Nanotubes and Quercetin Improves Physicochemical Properties of Chitosan Membrane for Wound Dressing Application

Authors

  • Nurul Huda Baktehir chool of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohamad Ajma’in Mohamed Arbi chool of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia;
  • Thiviya Selvaras School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norjihada Izzah Ismail ᵃSchool of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇMedical Devices and Technology Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n2.2776

Keywords:

Wound dressing, bioactive materials, chitosan biopolymer, quercetin, multi-walled carbon nanotubes

Abstract

Although wound dressings are essential to protect wound from infection, these wound care products have limited function in facilitating wound healing. This study aimed to synthesize multi-walled carbon nanotube (MWCNT)/quercetin (QUE)/chitosan (CS) blended composite membrane and analyze their physicochemical properties for wound dressing application in comparison to the pure chitosan (CS) membrane. The MWCNT/QUE/CS blended membranes were prepared by mixing CS, QUE and MWCNT at a ratio of 3:1:1 using a solvent casting method. The membranes were analyzed physicochemically for their surface morphology, elemental composition, structural composition, wettability, water vapor transmission rate (WVTR) and swelling properties and were compared to the pure CS membrane. The findings pointed out that the blend of MWCNTs and QUE in the CS matrix produces a membrane with uneven and more hydrophilic surface with water contact angle of 64.70°± 3.7 and low WVTR of 16.26 g/m2.day after 24 h. The swelling analysis showed that the blended membrane was able to absorb more than 60% of water within 10 minutes, although lower than the pure CS membrane. This study revealed that MWCNT/QUE/CS blended membrane could possibly be used as a wound dressing as it may promote moist environment needed for wound healing in addition to its antibacterial and antioxidant properties that may accelerate wound healing process.

References

Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 136(27), 47738.

Hadian, Y., Bagood, M. D., Dahle, S. E., Sood, A., & Isseroff, R. R. (2019). Interleukin-17: Potential target for chronic wounds. Mediators of Inflammation, 2019, 1-10.

Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 146, 344-365.

Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S., & Saparov, A. (2021). Immunology of acute and chronic wound healing. Biomolecules, 11(5), 700.

Schilrreff, P., & Alexiev, U. (2022). Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. International Journal of Molecular Sciences, 23(9), 4928.

Alvarez Echazú, M. I., Olivetti, C. E., Anesini, C., Perez, C. J., Alvarez, G. S., & Desimone, M. F. (2017). Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery. Materials Science and Engineering: C, 81, 588-596.

Ostapska, H., Howell, P. L., & Sheppard, D. C. (2018). Deacetylated microbial biofilm exopolysaccharides: It pays to be positive. PLoS Pathogens, 14(12), e1007411.

Marmont, L. S., Whitfield, G. B., Rich, J. D., Yip, P., Giesbrecht, L. B., Stremick, C. A., Whitney, J. C., Parsek, M. R., Harrison, J. J., & Howell, P. L. (2017). PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa. Journal of Biological Chemistry, 292(47), 19411-19422.

Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: hydrogel dressings. Biomedicines, 9(9), 1235.

Akhoondinasab, M.-R., Karimi, H., Sheikhizadeh, S., & Saberi, M. (2019). Reducing pain at split thickness donor sites with silicone dressing compared to petrolatum gauze dressing. Annals of Burns and Fire Disasters, 32(3), 210-215.

Wang, Y.-W., Liu, C.-C., Cherng, J.-H., Lin, C.-S., Chang, S.-J., Hong, Z.-J., Liu, C.-C., Chiu, Y.-K., Hsu, S.-D., & Chang, H. (2019). Biological effects of chitosan-based dressing on hemostasis mechanism. Polymers, 11, 1906.

Adnan, S., Ranjha, N. M., Hanif, M., & Asghar, S. (2020). O-Carboxymethylated chitosan; A promising tool with in-vivo anti-inflammatory and analgesic properties in albino rats. International Journal of Biological Macromolecules, 156, 531-536.

Abbas, M., Arshad, M., Rafique, M. K., Altalhi, A. A., Saleh, D. I., Ayub, M. A., Sharif, S., Riaz, M., Alshawwa, S.Z., Masood, N., Nazir, A., & Iqbal, M. (2022). Chitosan-polyvinyl alcohol membranes with improved antibacterial properties contained Calotropis procera extract as a robust wound healing agent. Arabian Journal of Chemistry, 15(5), 103766.

[14] Ismail, N. I., Sornambikai, S., Kadir, M. R. A., Mahmood, N. H., Zulkifli, R. M., & Shahir, S. (2018). Evaluation of radical scavenging capacity of polyphenols found in natural Malaysian honeys by voltammetric techniques. Electroanalysis, 30(12), 2939-2949.

Kale, A., Pişkin, Ö., Baş, Y., Aydın, B. G., Can, M., Elmas, Ö., & Büyükuysal, Ç. (2018). Neuroprotective effects of quercetin on radiation-induced brain injury in rats. Journal of Radiation Research, 59(4), 404-410.

Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., Liu, Y., & Chen, Y. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology, 120(4), 966-974.

Vipin, C., Mujeeburahiman, M., Ashwini, P., Arun, A. B., & Rekha, P.-D. (2019). Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Letters in Applied Microbiology, 68(5), 464-471.

Mu, Y., Zeng, H., & Chen, W. (2021). Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis. Frontiers in Microbiology, 12, 1-8.

Kang, X., Ma, Q., Wang, G., Li, N., Mao, Y., Wang, X., Wang, Y., & Wang, G. (2022). Potential mechanisms of quercetin influence the ClfB protein during biofilm formation of Staphylococcus aureus. Frontiers in Pharmacology, 13, 1-12.

Kim, Y. K., Roy, P. K., Ashrafudoulla, M., Nahar, S., Toushik, S. H., Hossain, M. I., Mizan, M. F. R., Park, S. H., & Ha, S.-D. (2022). Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control, 137, 108964.

Roy, P. K., Song, M. G., & Park, S. Y. (2022). Impact of quercetin against Salmonella typhimurium biofilm formation on food–contact surfaces and molecular mechanism pattern. Foods, 11, 977.

Kittana, N., Assali, M., Abu-Rass, H., Lutz, S., Hindawi, R., Ghannam, L., Zakarneh, M., & Mousa, A. (2018). Enhancement of wound healing by single-wall/multi-wall carbon nanotubes complexed with chitosan. International Journal of Nanomedicine, 13, 7195-7206.

Khoerunnisa, F., Rahmah, W., Seng Ooi, B., Dwihermiati, E., Nashrah, N., Fatimah, S., Ko, Y. G., & Ng, E.-P. (2020). Chitosan/PEG/MWCNT/Iodine composite membrane with enhanced antibacterial properties for dye wastewater treatment. Journal of Environmental Chemical Engineering, 8(2), 103686.

Liang, Y., Zhao, X., Hu, T., Han, Y., & Guo, B. (2019). Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. Journal of Colloid and Interface Science, 556, 514-528.

[25] Abo‐Neima, S. E., Motaweh, H. A., & Elsehly, E. M. (2020). Antimicrobial activity of functionalised carbon nanotubes against pathogenic microorganisms. IET Nanobiotechnology, 14(6), 457-464.

Sharmeen, S., Rahman, A. F. M. M., Lubna, M. M., Salem, K. S., Islam, R., & Khan, M. A. (2018). Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioactive Materials, 3(3), 236-244.

[27] Jahromi, M. A. M., Zangabad, P. S., Basri, S. M. M., Zangabad, K. S., Ghamarypoure, A., Aref, A. R., Karimi, M., & Hamblin, M. R. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced Drug Delivery Reviews, 123, 33-64.

Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 117, 304-336.

Crowe, E., Scott, C., Cameron, S., Cundell, J. H., & Davis, J. (2022). Developing wound moisture sensors: opportunities and challenges for laser-induced graphene-based materials. Journal of Composites Science, 6(6), 176.

Fideles, T. B., Santos, J. L., Tomás, H., Furtado, G. T. F. S., Lima, D. B., Borges, S. M. P., & Fook, M. V. L. (2018). Characterization of chitosan membranes crosslinked by sulfuric acid. Open Access Library Journal, 5, e4336.

Kadam, D., & Lele, S. S. (2018). Cross-linking effect of polyphenolic extracts of Lepidium sativum seedcake on physicochemical properties of chitosan films. International Journal of Biological Macromolecules, 114, 1240-1247.

Vedakumari, W. S., Ayaz, N., Karthick, A. S., Senthil, R., & Sastry, T. P. (2017). Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials — Fabrication, characterization and in vivo analysis. European Journal of Pharmaceutical Sciences, 97, 106-112.

Mohamed, N. A., & Abd El-Ghany, N. A. (2019). Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes. Cellulose, 26(2), 1141-1156.

Wang, X., Tang, R., Zhang, Y., Yu, Z., & Qi, C. (2016). Preparation of a novel chitosan based biopolymer dye and application in wood dyeing. Polymers, 8, 338.

Malekkiani, M., Magham, A. H. J., Ravari, F., & Dadmehr, M. (2022). Facile fabrication of ternary MWCNTs/ZnO/Chitosan nanocomposite for enhanced photocatalytic degradation of methylene blue and antibacterial activity. Scientific Reports, 12, 5927.

Diao, Y., Yu, X., Zhang, C., & Jing, Y. (2020). Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. Journal of Food Science and Technology, 57(6), 2259-2268.

Nataraj, D., Sakkara, S., Meghwal, M., & Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. International Journal of Biological Macromolecules, 120, 1256-1264.

Cheng, J., Zhu, H., Huang, J., Zhao, J., Yan, B., Ma, S., Zhang, H., & Fan, D. (2020). The physicochemical properties of chitosan prepared by microwave heating. Food Science & Nutrition, 8, 1987-1994.

Francis, A. A., Abdel-Gawad, S. A., & Shoeib, M. A. (2021). Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants. Journal of Coatings Technology and Research, 18(4), 971-988.

Metwally, N. H., Saad, G. R., & Abd El-Wahab, E. A. (2019). Grafting of multiwalled carbon nanotubes with pyrazole derivatives: Characterization, antimicrobial activity and molecular docking study. International Journal of Nanomedicine, 14, 6645-6659.

Porto, I. C. C. M., Nascimento, T. G., Oliveira, J. M. S., Freitas, P. H., Haimeur, A., & França, R. (2018). Use of polyphenols as a strategy to prevent bond degradation in the dentin-resin interface. European Journal of Oral Sciences, 126, 1-13.

Stanicka, K., Dobrucka, R., Woźniak, M., Sip, A., Majka, J., Kozak, W., & Ratajczak, I. (2021). The effect of chitosan type on biological and physicochemical properties of films with propolis extract. Polymers, 13, 3888.

Yadav, S., Mehrotra, G. K., Bhartiya, P., Singh, A., & Dutta, P. K. (2020). Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydrate Polymers, 227, 115348.

Thou, C. Z., Khan, F. S. A., Mubarak, N. M., Ahmad, A., Khalid, M., Jagadish, P., Walvekar, R., Abdullah, E. C., Khan, S., Khan, M., Hussain, S., Ahmad, I., & Algarni, T. S. (2021). Surface charge on chitosan/cellulose nanowhiskers composite via functionalized and untreated carbon nanotube. Arabian Journal of Chemistry, 14, 103022.

Cui, L., Gao, S., Song, X., Huang, L., Dong, H., Liu, J., Chen, F., & Yu, S. (2018). Preparation and characterization of chitosan membranes. RSC Advances, 8(50), 28433–28439.

Qi, P., Xu, Z., Zhang, T., Fei, T., & Wang, R. (2020). Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. Journal of Colloid and Interface Science, 560, 284-292.

Soubhagya, A. S., Moorthi, A., & Prabaharan, M. (2020). Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. International Journal of Biological Macromolecules, 157, 135-145.

Ganji, P., Nazari, S., Zinatizadeh, A. A., & Zinadini, S. (2022). Chitosan-wrapped multi-walled carbon nanotubes (CS/MWCNT) as nanofillers incorporated into nanofiltration (NF) membranes aiming at remarkable water purification. Journal of Water Process Engineering, 48, 102922.

Liu, J., Liu, S., Wu, Q., Gu, Y., Kan, J., & Jin, C. (2017). Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids, 73, 90-100.

Fan, J., Zhou, W., Wang, Q., Chu, Z., Yang, L., Yang, L., Sun, J., Zhao, L., Xu, J., Liang, Y., & Chen, Z. (2018). Structure dependence of water vapor permeation in polymer nanocomposite membranes investigated by positron annihilation lifetime spectroscopy. Journal of Membrane Science, 549, 581-587.

Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., Wang, Y., Lei, Q., Kong, Y., Bai, Y., Yao, Z., Yan, R., Li, H., Zhan, R., Yang, S., Luo, G., & Wu, J. (2016). Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Scientific Reports, 6, 24596.

Downloads

Published

18-04-2023