Synthesis, Properties, and Applications of Vanadium Pentoxide (V2O5) as Photocatalyst: A Review

Authors

  • K. S. A. Sohaimi ᵃAdvanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇFaculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia
  • J. Jaafar Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Rosman Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n5.2774

Abstract

Water pollution has increased worldwide, sparking interest in photocatalysis, a viable water treatment approach. Vanadium pentoxide (V2O5) is a good photocatalyst for photocatalytic degradation due to its excellent crystallinity, high yield and recyclability, low cost, photo-corrosion resistance, small band gap (2.3 eV), improved electron mobility, and broad absorption range. Pure V2O5's photocatalytic efficiency is limited by inefficient photonic and quantum processes, and its tiny structure enables photogenerated carriers to recombine, reducing efficiency. This prevents widespread use of V2O5. This mini-review examines V2O5 as a potent visible-light photocatalyst, focusing on its structure, synthesis methods, and modifications that improve its efficiency. Hydrothermal, sol-gel, co-precipitation, solvothermal, and others are reviewed. The methods employed affect the photocatalyst's efficiency. Photogenerated electron-hole separation, charge transfer to catalyst surface or across two-phase catalyst interfaces, and reactive species interaction with hazardous contaminants are all affected. Photoredox uses have been explored for dyes, phenols, and pharmaceutical wastes. According to a review of the past decades, V2O5 has primarily been used for the degradation of dye pollutants, with fewer applications for pharmaceutical wastes and other pollutants. More research on V2O5's capabilities and qualities on diverse target pollutants is needed. This mini-review discusses present obstacles in producing vanadium pentoxide-based systems and future research prospects. Despite its potential as a photocatalyst, V2O5 has not been thoroughly researched as an electron storage material. Numerous investigations have shown that V2O5 can store energy like lithium batteries. This finding will likely motivate researchers and newcomers to explore V2O5's potential to synthesise nanomaterials with increased electron storage capacity, making it a good day-night photocatalyst. This review should improve future V2O5 research.

References

Q. Liang, X. Chen, R. Liu, K. Xu, and H. Luo. (2023). Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-ZnxCd1-xS graphene aerogel via synergy of adsorption and photocatalysis under visible light. J. Environ. Sci. (China), 124, 360-370. Doi: 10.1016/j.jes.2021.09.037.

Y. Yu et al. (2021). Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method. J. Hazard. Mater., 404(PA), 124171. Doi: 10.1016/j.jhazmat.2020.124171.

J. Pan et al. (2015). Synthesis and SERS activity of V2O5 nanoparticles. Appl. Surf. Sci., 333, 34-38. Doi: 10.1016/j.apsusc.2015.01.242.

J. Zia, J. Kashyap, and U. Riaz. (2018). Facile synthesis of polypyrrole encapsulated V2O5 nanohybrids for visible light driven green sonophotocatalytic degradation of antibiotics. J. Mol. Liq., 272, 834-850. Doi: 10.1016/j.molliq.2018.10.091.

S. Sekar et al. (2021). Graphitic carbon-encapsulated V2O5 nanocomposites as a superb photocatalyst for crystal violet degradation. Environ. Res., September, 112201. Doi: 10.1016/j.envres.2021.112201.

L. Parashuram et al. (2022). Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol A. Chemosphere, 287(P4), 132348. Doi: 10.1016/j.chemosphere.2021.132348.

H. Zou, G. Xiao, K. Chen, and X. Peng. (2018), Noble metal-free V2O5/g-C3N4 composites for selective oxidation of olefins using hydrogen peroxide as an oxidant. Dalt. Trans., 47(38), 13565-13572. Doi: 10.1039/c8dt02765j.

M. M. Sajid et al. (2020). Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surfaces and Interfaces, 19(February), 100502. Doi: 10.1016/j.surfin.2020.100502.

A. Mishra et al. (2020). Rapid photodegradation of methylene blue dye by rGO- V2O5 nano composite. J. Alloys Compd., 842, 155746. Doi: 10.1016/j.jallcom.2020.155746.

Y. Chen et al. (2022). Tailoring defective vanadium pentoxide/reduced graphene oxide electrodes for all-vanadium-oxide asymmetric supercapacitors. Chem. Eng. J., 429(September), 132274. Doi: 10.1016/j.cej.2021.132274.

S. K. Jayaraj, V. Sadishkumar, T. Arun, and P. Thangadurai. (2018). Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process., 85(May), 122-133. Doi: 10.1016/j.mssp.2018.06.006.

D. Velpula, S. Konda, S. Vasukula, and S. C. Chidurala. (2021). Microwave radiated comparative growths of vanadium pentoxide nanostructures by green and chemical routes for energy storage applications. Mater. Today Proc., 47, 1760-1766. Doi: 10.1016/j.matpr.2021.02.599.

P. S. Lekshmi, A. Ancy, I. Jinchu, and C. O. Sreekala. 2019. Energy storage application of titanium doped vanadium pentoxide nanostructures prepared by electrospinning method. Mater. Today Proc., 33, 1420-1423. Doi: 10.1016/j.matpr.2020.06.528.

A. Badreldin et al. (2021). Surface microenvironment engineering of black V2O5 nanostructures for visible light photodegradation of methylene blue. J. Alloys Compd., 871, 159615. Doi: 10.1016/j.jallcom.2021.159615.

M. Beaula Ruby Kamalam et al. (2021). Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye. Environ. Res., 199(May), 111369. Doi: 10.1016/j.envres.2021.111369.

S. Le et al. (2021). V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Appl. Catal. B Environ., 303(September), 120903. Doi: 10.1016/j.apcatb.2021.120903.

J. Zheng and L. Zhang. (2021). One-step in situ formation of 3D hollow sphere-like V2O5 incorporated Ni3V2O8 hybrids with enhanced photocatalytic performance. J. Hazard. Mater., 416(April), 125934. Doi: 10.1016/j.jhazmat.2021.125934.

M. Preeyanghaa, V. Vinesh, and B. Neppolian. (2022). Construction of S-scheme 1D/2D rod-like g-C3N4/V2O5 heterostructure with enhanced sonophotocatalytic degradation for Tetracycline antibiotics. Chemosphere, 287(September). Doi: 10.1016/j.chemosphere.2021.132380.

M. Aslam, I. M. I. Ismail, N. Salah, S. Chandrasekaran, M. T. Qamar, and A. Hameed. (2015). Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. J. Hazard. Mater., 286(1), 127-135. Doi: 10.1016/j.jhazmat.2014.12.022.

R. Liu et al. (2020). Ag-Modified g-C3N4 prepared by a one-step calcination method for enhanced catalytic Efficiency and stability. ACS Omega, 5(31), 19615-19624. Doi: 10.1021/acsomega.0c02161.

Y. Yuan et al. (2021). A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater. Today Energy, 21, 100829. Doi: 10.1016/j.mtener.2021.100829.

N. Sahraeian, F. Esmaeilzadeh, and D. Mowla. 2021. Hydrothermal synthesis of V2O5 nanospheres as catalyst for hydrogen sulfide removal from sour water. Ceram. Int., 47(1), 923-934. Doi: 10.1016/j.ceramint.2020.08.204.

A. T. Raj, K. Ramanujan, S. Thangavel, S. Gopalakrishan, N. Raghavan, and G. Venugopal. (2015). Facile synthesis of vanadium-pentoxide nanoparticles and study on their electrochemical, photocatalytic properties. J. Nanosci. Nanotechnol., 15(5), 3802-3808. Doi: 10.1166/jnn.2015.9543.

R. T. Rasheed et al. (2021). Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method. J. Therm. Anal. Calorim., 145(2), 297-307. Doi: 10.1007/s10973-020-09725-5.

L. Shao et al. (2014). Sol-gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques. Ceram. Int., 40(4), 6115-6125. Doi: 10.1016/j.ceramint.2013.11.063.

S. Deb Roy, K. Chandra Das, and S. Sankar Dhar. (2021). Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short Review. Inorg. Chem. Commun., 109050. Doi: 10.1016/j.inoche.2021.109050.

F. Mukhtar, T. Munawar, M. S. Nadeem, M. N. ur Rehman, M. Riaz, and F. Iqbal. (2021). Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys., 263(February), 124372. Doi: 10.1016/j.matchemphys.2021.124372.

Y. Inomata et al. (2020). Synthesis of bulk vanadium oxide with a large surface area using organic acids and its low-temperature NH3-SCR activity. Catal. Today, 376(June), 188-196. Doi: 10.1016/j.cattod.2020.06.041.

J. Liu et al. (2020). Conjugate Polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J. Colloid Interface Sci., 578, 402-11. Doi: 10.1016/j.jcis.2020.06.014.

S. Li et al. (2022). Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels. Chem. Eng. J., 430(P2), 132863. Doi: 10.1016/j.cej.2021.132863.

B. Jansi Rani, G. Ravi, and R. Yuvakkumar. (2020). Solvothermal optimization of V2O5 nanostructures for electrochemical energy production. AIP Conf. Proc., 2265(November), 2-6. Doi: 10.1063/5.0017751.

S. Thiagarajan, M. Thaiyan, and R. Ganesan. (2015). Physical property exploration of highly oriented V2O5 thin films prepared by electron beam evaporation. New J. Chem., 39(12), 9471-9479. Doi: 10.1039/c5nj01582k.

J. R. Koduru, L. P. Lingamdinne, J. Singh, and K. H. Choo. (2016). Effective removal of bisphenol-A (BPA) from water using a goethite/activated carbon composite. Process Saf. Environ. Prot., 103, 87-96. Doi: 10.1016/j.psep.2016.06.038.

M. Mohsen, H. Mohammadzadeh, and B. Lee. (2022). Effectiveness of MnO2 and V2O5 deposition on light fostered supercapacitor performance of WTiO2 nanotube : Novel electrodes for photo-assisted supercapacitors. Chem. Eng. J., 450(P1), 137941. Doi: 10.1016/j.cej.2022.137941.

S. Kundu, B. Satpati, T. Kar, and S. K. Pradhan. (2017). Microstructure characterization of hydrothermally synthesized PANI/V2O5·nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard. Mater., 339, 161-173. Doi: 10.1016/j.jhazmat.2017.06.034.

F. Gittleson, J. Hwang, R. C. Sekol, and A. D. Taylor. (2013). In-situ polymer coating of V2O5 nanowires for improved cathodic stability. ECS Meet. Abstr., MA2013-01(10), 504-504. Doi: 10.1149/ma2013-01/10/504.

J. Gu Heo et al. (2022). Low-temperature shift DeNOx activity of Nanoflake V2O5 loaded WO3/TiO2 as NH3-SCR catalyst. Inorg. Chem. Commun., 137(September), 109191. Doi: 10.1016/j.inoche.2021.109191.

F. Ranjbar, S. Hajati, M. Ghaedi, K. Dashtian, H. Naderi, and J. Toth. (2021). Highly selective MXene/V2O5/CuWO4-based ultra-sensitive room temperature ammonia sensor. J. Hazard. Mater., 416(May), 126196. Doi: 10.1016/j.jhazmat.2021.126196.

A. Jenifer, M. L. S. Sastri, and S. Sriram. (2021). Photocatalytic dye degradation of V2O5 Nanoparticles—An experimental and DFT analysis. Optik (Stuttg)., 243(May), 167148. Doi: 10.1016/j.ijleo.2021.167148.

G. Jaria et al. (2019). Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. J. Hazard. Mater., 370(October), 212-218. Doi: 10.1016/j.jhazmat.2018.02.053.

A. N. Oliveros, J. A. I. Pimentel, M. D. G. de Luna, S. Garcia-Segura, R. R. M. Abarca, and R. A. Doong. (2021). Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J., 403, 126213. Doi: 10.1016/j.cej.2020.126213.

C. Huang, J. Wang, M. Li, X. Lei, and Q. Wu. (2021). Construction of a novel Z-scheme V2O5/NH2-MIL-101(Fe) composite photocatalyst with enhanced photocatalytic degradation of tetracycline. Solid State Sci., 117(August), 1-8. Doi: 10.1016/j.solidstatesciences.2021.106611.

A. Tarafdar et al. (2022). The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater.,. 423(PA), 127097. Doi: 10.1016/j.jhazmat.2021.127097.

Downloads

Published

19-10-2023