Preliminary Study of Utilizing Polyaniline as Electrode Material for Supercapacitor Application: Juxtaposition of Electrochemical Performances
DOI:
https://doi.org/10.11113/mjfas.v19n4.2769Keywords:
Substrate, dopants, electrolyte, specific capacitanceAbstract
Polyaniline (PANI) were prepared via a one-step electrochemical polymerization method in 0.2 M aniline and 0.2 M dopants for supercapacitors (SCs) application. To determine the appropriate conditions and materials for SCs application, the type of substrate, scan rate, dopants, and electrolyte on PANI were varied. The PANI composite's potential to store energy was conducted and evaluated using cyclic voltammetry in a three-electrode setup. The PANI-carbon felt demonstrated the best electrochemical performance compared to other substrate namely carbon and stainless steel. It is found that utilising H2SO4 as both dopant and electrolyte results in high specific capacitance.
References
K. Xie, M. Zhang, Y. Yang, L. Zhao, and W. Qi. (2018). Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Research Letters, 13, 163. 10.1186/s11671-018-2577-3.
S. Rajagopal, R. Pulapparambil Vallikkattil, M. Mohamed Ibrahim, and D. G. Velev. (2022). Electrode materials for supercapacitors in hybrid electric vehicles: challenges and current progress. Condensed Matter, 7, 10.3390/condmat7010006.
H. Wang, J. Lin, and Z.X. Shen. (2016). Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 1, 225-255. 10.1016/j.jsamd.2016.08.001.
H. Fisal Alesary, H. Khalil Ismail, A. Fadhil Khudhair, and M. Qasim Mohammed. (2018). Effects of dopant ions on the properties of polyaniline conducting polymer. Oriental Journal of Chemistry, 34, 2525-2533. 10.13005/ojc/340539.
J. Du, Y. Li, Q. Zhong, J. Yang, J. Xiao, Chen, F. Wang, Y. Luo, K. Chen, and W. Li. (2020). Boosting the utilization and electrochemical performances of polyaniline by forming a binder-free nanoscale coaxially coated polyaniline/carbon nanotube/carbon fiber paper hierarchical 3D microstructure composite as a supercapacitor electrode. ACS Omega, 5, 22119-22130.
A. Viswanathan and A. N. Shetty. (2022). Influence of different dopants and redox forms of PANI in its crystal structure, morphology, electrochemical energy storage to variable extent, unique properties and kinetics. Bulletin of Materials Science, 45. 10.1007/s12034-021-02626-9.
M. R. Islam, S. S. Gupta, S. K. Jana, and T. Pradeep. (2022). Industrial utilization of capacitive deionization technology for the removal of fluoride and toxic metal ions (As(3+/5+) and Pb(2+)). Global Challenges, 6, 2100129. 10.1002/gch2.202100129.
Z. K. Ghouri, N. M. Barakat, and H. Y. Kim. (2015). Synthesis and Electrochemical Properties of MnO2 and Co-Decorated Graphene as Novel Nanocomposite for Electrochemical Super Capacitors Application. Energy and Environment Focus, 4, 34-39, 10.1166/eef.2015.1136.
A. A. Abaalkhail, B. A. Alshammari, G. N. Almutairi, F. S. Alenazey, M. F. Alotibi, A. M. Alenad, A. G. Alharbi, T. S. Almoneef, and B. M. AlOtaibi. (2022). enhancing the performance of a metal-free self-supported carbon felt-based supercapacitor with facile two-step electrochemical activation. Nanomaterials (Basel), 12, 10.3390/nano12030427.
N. A. Salleh and A. A. Mohamad. (2020). Characterization of stainless steel mesh as a current collector in the supercapacitor application. 3rd International Postgraduate Conference on Materials, Minerals & Polymer (Mamip).
H. Cao, X. Peng, M. Zhao, P. Liu, B. Xu, and J. Guo. (2018). Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Advances, 8, 2858-2865. 10.1039/c7ra12425b.
Thi Xuan Huong Le, Mikhael Bechelany, and M. Cretin. (2017). Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 122, 564-591.
K. Bednarczyk, W. Matysiak, T. Tanski, H. Janeczek, E. Schab-Balcerzak, and M. Libera. (2021). Effect of polyaniline content and protonating dopants on electroconductive composites. Scientific Reports, 11, 7487. 10.1038/s41598-021-86950-4.
Y. Lu, Z. D. Yu, Y. Liu, Y. F. Ding, C. Y. Yang, Z. F. Yao, Z. Y. Wang, H. Y. You, X. F. Cheng, B. Tang, J. Y. Wang, and J. Pei. (2020). The critical role of dopant cations in electrical conductivity and thermoelectric performance of n-Doped polymers. Journal of American Chemical Society, 142, 15340-15348. 10.1021/jacs.0c05699.
O. A. Nunoo, Joseph Asare Awuah, E. K. K. Abavare, and K. Singh. (2019). Effect of primary dopants on the conductivity of polyaniline synthesized by electrochemical polymerization. International Journal of Advanced Research in Engineering and Technology, 10, 157-163.
H. S. Nde, P. A. Tamfuh, G. Clet, J. Vieillard, M. T. Mbognou, and E. D. Woumfo (2019). Comparison of HCl and H2SO4 for the acid activation of a cameroonian smectite soil clay: palm oil discolouration and landfill leachate treatment. Heliyon, 5, e02926. 10.1016/j.heliyon.2019.e02926.
A. Eftekhari, L. Li, and Y. Yang. (2017). Polyaniline supercapacitors. Journal of Power Sources, 347, 86-107. 10.1016/j.jpowsour.2017.02.054.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nur Dina Zaulkiflee, Abdul Latif Ahmad, Nuur Fahanis Che Lah, Siew Chun Low, Nishiyama Norikazu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.