Effect of Bee Pollen Kelulut Bees on HBA1C in Type 2 Diabetes Mellitus Patients


  • Annaas Budi Setyawan Faculty of Nursing, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
  • Andri Praja Satria Faculty of Nursing, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
  • Enos Tangke Arung Faculty of Forest, Mulawarman University, Samarinda, Indonesia
  • Swandari Paramita Faculty of Medicine, Mulawarman University, Samarinda, Indonesia




Type 2 Diabetes Mellitus, Antidiabetic Activity, Bee Pollen kelulut bees


Bee pollen has been used for generations to treat various diseases, including diabetes mellitus, because it inhibits alpha glucosidase enzyme. Two major problems suffered by patients with type 2 Diabetes Mellitus (DM) are linked to insulin resistance and impaired insulin secretion. They often occur in patients aged above 30 years and obese patients. High blood glucose and other complications, including increased HBA1C, are some of the risks faced by people with type 2 diabetes mellitus. This study aimed to reveal the efficacy of bee pollen in lowering the HBA1C levels of patients with type 2 DM. Subjects were gave bee pollen kelulut bees to the intervention group, twice a day in the morning during 4 weeks.  This study was quasy experimental research. It involved 30 patients who were divided into the intervention group and the control group. Data were analysis determined the differences in the control and intervention groups using the Mann Whitney test. The result of pre- and post-group was p value=0.001(<0.05), meaning that there was a significant difference in median cholesterol levels, while the result difference of the two groups was p value=0.033 (<0.05), implying there was a significant difference in HBA1C levels of the two groups. Bee pollen has been shown to lower HBA1C and have a potential as a non-pharmacological treatment in patients with type 2 DM.


Abd Jalil, M. A., Kasmuri, A. R., & Hadi, H. (2017). Stingless bee honey, the natural wound healer: A review. Skin Pharmacology and Physiology, 30(2), 66-75. https://doi.org/10.1159/000458416.

Al-Saeed, A. H., Constantino, M. I., Molyneaux, L., D’Souza, M., Limacher-Gisler, F., Luo, C., Wu, T., Twigg, S. M., Yue, D. K., & Wong, J. (2016). An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: The impact of youth-onset type 2 diabetes. Diabetes Care, 39(5), 823-829. https://doi.org/10.2337/dc15-0991.

Arung, E. T., Ramadhan, R., Khairunnisa, B., Amen, Y., Matsumoto, M., Nagata, M., Kusuma, I. W., Paramita, S., Sukemi, Yadi, Tandirogang, N., Takemoto, N., Syafrizal, Kim, Y. ung, & Shimizu, K. (2021). Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines. Saudi Journal of Biological Sciences, 28(12), 7182-7189. https://doi.org/10.1016/j.sjbs.2021.08.017.

Ávila, S., Beux, M. R., Ribani, R. H., & Zambiazi, R. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science and Technology, 81(August), 37-50. https://doi.org/10.1016/j.tifs.2018.09.002.

Badrulhisham, N. S. R., Ab Hamid, S. N. P., Ismail, M. A. H., Yong, Y. K., Muhamad Zakuan, N., Harith, H. H., Saidi, H. I., & Nurdin, A. (2020). Harvested locations influence the total phenolic content, antioxidant levels, cytotoxic, and anti-inflammatory activities of stingless bee honey. Journal of Asia-Pacific Entomology, 23(4), 950-956. https://doi.org/10.1016/j.aspen.2020.07.015.

Cohen, R. M., Franco, R. S., Smith, E. P., & Higgins, J. M. (2018). When HbA1c and blood glucose do not match: how much is determined by race, by genetics, by differences in mean red blood cell age? Journal of Clinical Endocrinology and Metabolism, 104(3), 707-710. https://doi.org/10.1210/jc.2018-02409.

Dendup, T., Feng, X., Clingan, S., & Astell-Burt, T. (2018). Environmental risk factors for developing type 2 diabetes mellitus: A systematic review. International Journal of Environmental Research and Public Health, 15(1). https://doi.org/10.3390/ijerph15010078.

Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303-4309. https://doi.org/10.1002/jsfa.7729.

Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., & Musik, I. (2018). Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/7074209.

Lavinas, F. C., Macedo, E. H. B. C., Sá, G. B. L., Amaral, A. C. F., Silva, J. R. A., Azevedo, M. M. B., Vieira, B. A., Domingos, T. F. S., Vermelho, A. B., Carneiro, C. S., & Rodrigues, I. A. (2019). Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Revista Brasileira de Farmacognosia, 29(3), 389-399. https://doi.org/10.1016/j.bjp.2018.11.007.

M C B Nascimento, A., & E Luz Jr, G. (2018). Bee pollen properties: uses and potential pharmacological applications-a review. Journal of Analytical & Pharmaceutical Research, 7(5), 513-515. https://doi.org/10.15406/japlr.2018.07.00276.

Magdaleni, S. D. A. R. (2018). Secondary Metabolite Compounds of Bee Pollen the Geniotrigona Incise Sakagami & Inoue. from Samarinda East Borneo. International Journal of Science and Research (IJSR), 7(2), 556-560. https://doi.org/10.21275/ART201710012.

Maqbool, M., Naeem, A., & Aamer, S. (2018). Diabetes mellitus and its various management strategies in practice. Indo American Journal of Pharmaceutical Sciences, 5(8), 8163.

Martinello, M., & Mutinelli, F. (2021). Antioxidant activity in bee products: A review. Antioxidants, 10(1), 1-42. https://doi.org/10.3390/antiox10010071.

Pillai Subramanian, S. (2018). Amelioration of diabetic dyslipidemia by GTF – 231 (Gymnemic acid, Trigonelline and Ferulic acid- 2:3:1), a phytochemical preparation studied in high fat diet fed-low dose STZ Induced experimental type 2 diabetes in Rats. Journal of Diabetes and Obesity, 5(1), 1-9. https://doi.org/10.15436/2376-0494.18.1690.

Prahastuti, S., Ladi, J. E., Dewi, K., Albertina, F., & Imam, M. K. (2020). The effect of bee pollen on SGOT, SGPT levels and liver histopathological images of male rats wistar induced by high fat diet. Journal of Medicine and Health, 2(5), 51-60. https://doi.org/10.28932/jmh.v2i5.2040.

Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42, S10-S15. https://doi.org/10.1016/j.jcjd.2017.10.003.

Radzeviciene, L., & Ostrauskas, R. (2018). Smoking habits and type 2 diabetes mellitus in women. Women and Health, 58(8), 884-897. https://doi.org/10.1080/03630242.2017.1358794.

Sarihati, I. G. A. D., Karimah, H. N., & Habibah, N. (2019). Gambaran Kadar HbA1C Pada Pasien Diabetes Melitus Tipe 2 di Rsud Wangaya (Descriptive of HBA1C level on Type 2 diabetes mellitus patient at Wangaya Hospital). Meditory : The Journal of Medical Laboratory, 6(2), 88-98. https://doi.org/10.33992/m.v6i2.442.

Setyawan, A. B., Sina, I., Harfiani, E., Dewi, N. U., & Supinganto, A. (2020). Effect of tea concocted from bawang dayak (eleutherine palmifolia) on cholesterol of type 2 diabetes mellitus: Pretest-posttest control group design. Systematic Reviews in Pharmacy, 11(4), 674-680. https://doi.org/10.31838/srp.2020.4.99.

Syafrizal, Ramadhan, R., Kusuma, I. W., Egra, S., Shimizu, K., Kanzaki, M., & Arung, E. T. (2020). Diversity and honey properties of stingless bees from meliponiculture in east and north kalimantan, indonesia. Biodiversitas, 21(10), 4623-4630. https://doi.org/10.13057/biodiv/d211021.

Xi, X., Li, J., Guo, S., Li, Y., Xu, F., Zheng, M., Cao, H., Cui, X., Guo, H., & Han, C. (2018). The potential of using bee pollen in cosmetics: A review. Journal of Oleo Science, 67(9), 1071-1082. https://doi.org/10.5650/jos.ess18048.