Expression Analysis of OsWRKY11 and OsNAC2 Genes in New Malaysian Drought-tolerance Rice Cultivar MR303


  • Iqmal Asyraf Ilias Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Alina Wagiran Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Kamalrul Azlan Azizan Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Abdul Fatah A. Samad UDepartment of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia



Transcription factor, OsWRKY11 gene, OsNAC2 gene, MR303 rice, proline


Local drought-tolerant rice variety MR303 (Oryza sativa spp. Indica) has higher tolerance towards abiotic stress while maintaining its high yield and grain quality. Expression of OsWRKY11 has shown to be a positive modulator while OsNAC2 is a negative modulator for drought-tolerance in Oryza sativa spp. Japonica. However, these transcription factor (TF) genes regulation are species-specific and its regulation may differ in our local rice variety. Thus, our study aimed to identify the relative expression of these genes and its effects on plant morphology and drought-tolerance capabilities. Our results on relative expression of OsWRKY11 in the MR303 rice variety showed that under drought stress, this gene was highly expressed. This result was similar to previous findings in Oryza sativa spp. Japonica. However, for OsNAC2 gene expression, our results contradict with previous findings where under drought stress, this gene was also highly expressed instead of downregulated. These results suggest that our local rice variety may have different gene regulation under drought stress compared to other rice varieties. Proline assay showed that proline contents in drought-treated plant has increased 10 times compared to control which associated with drought-tolerance activities. Further studies may be conducted to gain better understanding on the roles of these genes in regulating drought-responsive genes in the local variety.


Upadhyaya, H., Panda, S. K. (2019). Chapter 9 - Drought Stress Responses and Its Management in Rice. In: Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J. K., editors. Advances in Rice Research for Abiotic Stress Tolerance, Woodhead Publishing, 177-200.

Yuan, X., Wang, H., Cai, J., Bi, Y., Li, D., Song, F. (2019). Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 19(1), 278.

Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5(170).

Samad, A. F. A., Sajad, M., Nazaruddin, N., Fauzit, I. A., Murad, A. M. A., Zainal, Z., et al. (2017). MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science, 8(565).

Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol., 149(1), 88-95.

Udvardi, M. K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja. A, et al. (2007). Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology, 144(2), 538-49.

Xu, Z. S., Chen, M., Li, L. C., Ma, Y. Z. (2011). Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol., 53(7), 570-85.

Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol., 57, 781-803.

Chung, P. J., Jung, H., Choi, Y. D., Kim, J-K. (2018). Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics, 19(1), 40.

Viana, V. E., Busanello, C., da Maia, L. C., Pegoraro, C., Costa de Oliveira, A. (2018). Activation of rice WRKY transcription factors: an army of stress fighting soldiers? Curr Opin Plant Biol., 45(Pt B), 268-75.

Babu, M. M., Iyer, L. M., Balaji, S., Aravind, L. (2006). The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res., 34(22):6505-20.

Ciolkowski, I., Wanke, D., Birkenbihl, R. P., Somssich, I. E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant molecular biology, 68(1-2), 81-92.

Erpen, L., Devi, H. S., Grosser, J. W., Dutt, M. (2018). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 1-25.

Babitha, K. C., Ramu, S. V., Pruthvi, V., Mahesh, P., Nataraja, K. N., Udayakumar, M. (2013). Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res., 22(2), 327-41.

Qiu, Y., Jing, S., Fu, J., Li, L., Yu, D. (2004). Cloning and analysis of expression profile of 13WRKY genes in rice. Chinese Science Bulletin, 49(20), 2159-68.

Wu, H., Ni, Z., Yao, Y., Guo, G., Sun, Q. (2008). Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science. 18(6), 697-705.

Şahin-Çevik, M. (2012). A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics, 5, 438-45.

He, G. H., Xu, J. Y., Wang, Y. X., Liu, J. M., Li, P. S., Chen, M., et al. (2016). Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol., 16(1):116.

Tian, F., Yang, D-C., Meng, Y-Q., Jin, J., Gao, G. (2019). PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research, 48(D1), D1104-D13.

Zhang, H., Ma, F., Wangt, X., Liu, S., Saeed, U. H., Hou, X., et al. (2020). Molecular and functional characterization of CaNAC035, an NAC transcription factor from pepper (Capsicum annuum L.). Frontiers in Plant Science, 11(14).

Baillo, E. H., Kimotho, R. N., Zhang, Z., Xu, P. (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 10(10).

Das, A., Pramanik, K,. Sharma, R., Gantait, S., Banerjee, J. (2019). In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. PLoS One, 14(2), e0211887.

Singh, D., Laxmi, A. (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci.; 6, 895.

Xie, L-n., Chen, M., Min, D. H., Feng, L., Xu, Z-S., Zhou, Y-b., et al. (2017). The NAC-like transcription factor SiNAC110 in foxtail millet ( Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. Journal of Integrative Agriculture, 16, 559-71.

Hussain, Z. P. M. D., Mokhtar, A., Amzah, B., Hashim, M., Ghaffar, M. B. A. (2012). Six MARDI popular rice varieties. Buletin Teknologi MARDI, 1, 1-10.

Ross, C. A., Liu, Y., Shen, Q. J. (2007). The WRKY Gene Family in Rice (Oryza sativa). Journal of Integrative Plant Biology, 49(6), 827-42.

Sunian, E., Jamal, M. S., Saidon, S. A., Ghaffar, M. B. A., Mokhtar, A., Kamarruzzaman, R., et al. (2019). MARDI Sempadan 303 – Varieti padi baharu MARDI. Buletin Teknologi MARDI, 17, 155-66.

Lee, H., Cha, J., Choi, C., Choi, N., Ji, H-S., Park, S. R., et al. (2018). Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice, 11(1):5.

Shen, J., Lv, B., Luo, L., He, J., Mao, C., Xit, D., et al. (2017). The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep., 7, 40641.

Furlan, A. L., Bianucci, E., Giordano, W., Castro, S., Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151, 566-78.

Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817.

Ferreira, T., Rasband, W. (2012). ImageJ User Guide.

Chomczynski, P., Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nature Protocols, 1(2), 581-5.

Samad, A. F. A., Nazaruddin, N., Murad, A. M. A., Jani, J., Zainal, Z., Ismail, I. (2018). Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech., 8(3), 136.

Martiansyah, I., Amanah, D., Putranto, R.. (2018). Semi-quantitative RT-PCR analysis of transcripts encoding protease inhibitor in Hevea brasiliensis Muell. Arg latex. IOP Conference Series: Earth and Environmental Science, 183, 012004.

Abrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L. (2010). Methods for determination of proline in plants. Methods Mol Biol. 639, 317-31.

Moldenhauer, K., Slaton, N. (2001). Rice growth and development. Rice production handbook, 192, 7-14.

Linquist, B., Espino, L., Leinfelder-Miles, M., Brim-Deforest, W., Grettenberger, I., Al-Khatib, K. (2018). Rice Growth and Development: University of California. [Available from:

Pabuayon, I. M., Yamamoto, N., Trinidad, J. L., Longkumer, T., Raorane, M. .L, Kohli, A. (2016). Reference genes for accurate gene expression analyses across different tissues, developmental stages and genotypes in rice for drought tolerance. Rice (N Y), 9(1), 32-.

Man, D., Bao, Y-X., Han, L-B., Zhang, X. (2011). Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience horts.;46(7), 1027-32.

Seki, M., Umezawa, T., Urano, K., Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology., 10(3), 296-302.