Incorporation of Transgenic Microalgae Harbouring Vaccines into Feed to Improve the Efficacy of Oral Vaccination: A Review
DOI:
https://doi.org/10.11113/mjfas.v18n5.2645Keywords:
Aquaculture, Diseases, Feed Formulation, Oral Vaccination, Transgenic microalgaeAbstract
The aquaculture industry has been rapidly progressive and is contributing to economic growth in many countries worldwide. However, one of the factors that is affecting the aquaculture industry are diseases caused by pathogens such as bacteria, viruses, fungi, and parasites. The utilization of antibiotics has been one of the measures taken in controlling fish diseases. However, continuous treatment with antibiotics for a long period of time will lead to the development of antibiotic-resistant pathogens which can cause harm to the well-being of humans, animals, and the environment as well. An alternative method in combating fish diseases is through vaccination. Vaccination for fish is commonly done by injection and is known to be very effective in protecting fishes from various ailments. However, this method is labour intensive, costly, stressful to the fish and not suitable for juvenile fish. Therefore, other methods are necessary to be performed for vaccinating the fish. This review aims to demonstrate effective methods of delivering vaccine to the fish using transgenic microalgae, specifically via oral vaccination. This review article summarizes the challenges faced in the aquaculture industry which could be mitigated via improved vaccination procedures. In addition to that, the potentials of incorporating transgenic microalgae whole cells into fish feed formulation as an alternative method of disease control is also outlined.
References
Food and Agriculture organization of the United Nations. (2022). The state of world fisheries and aquaculture 2022- towards blue transformation. FAO. https://doi.org/10.4060/cc0461en.
Department for Economic and Social Affairs. (2017). Sustainable development goals report 2017. United Nations Publications. https://unstats.un.org/sdgs/files/report/2017/thesustainabledevelopmentgoalsreport2017.pdf.
Watts, J., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158.
Earle, G., & Hintz, W. (2014). New approaches for controlling Saprolegnia parasitica, the causal agent of a devastating fish disease. Tropical life sciences research, 25(2), 101–109.
Kar, D. (2016). Introduction. Epizootic Ulcerative Fish Disease Syndrome, 1–19. https://doi.org/10.1016/b978-0-12-802504-8.00001-8.
Wamala, S. P., Mugimba, K. K., Mutoloki, S., Evensen, Ø., Mdegela, R., Byarugaba, D. K., & Sørum, H. (2018). Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fisheries and Aquatic Sciences, 21, 6. https://doi.org/10.1186/s41240-017-0080-x.
Sudheesh, P. S., Al-Ghabshi, A., Al-Mazrooei, N., & Al-Habsi, S. (2012). Comparative pathogenomics of bacteria causing infectious diseases in fish. International Journal of Evolutionary Biology, 2012, 1–16. https://doi.org/10.1155/2012/457264.
Kim, C. H., & Leong, J. A. (1999). Fish viruses. Encyclopedia of Virology, 558–568. https://doi.org/10.1006/rwvi.1999.0100.
Abidin, A. A. Z., Suntarajh, M., & Yusof, Z. N. B. (2020b). Transformation of a Malaysian species of Nannochloropsis: Gateway to construction of transgenic microalgae as vaccine delivery system to aquatic organisms. Bioengineered, 11(1), 1071-1079. https://doi.org/10.1080/21655979.2020.1822106.
Abidin, A. A. Z., Othman, N. A., Yusoff, F. M., & Yusof, Z. N. B. (2021a). Determination of transgene stability in Nannochloropsis sp. transformed with immunogenic peptide for oral vaccination against vibriosis. Aquaculture International, 29(2), 477-486. http://dx.doi.org/10.1007/s10499-020-00634-w.
Soliman, W. S., Shaapan, R. M., Mohamed, L. A., & Gayed, S. S. (2019). Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Veterinary Journal, 9(3), 190-195. https://doi.org/10.4314/ovj.v9i3.2.
Ben Hamed, S., Tapia-Paniagua, S.T., Moriñigo, M. Á. & Ranzani-Paiva, M. J. T. (2021). Advances in vaccines developed for bacterial fish diseases, performance and limits. Aquaculture Research, 52, 2377-2390. https://doi.org/10.1111/are.15114.
Rigos, G., Kogiannou, D., Padrós, F., Cristòfol, C., Florio, D., Fioravanti, M. and Zarza, C. (2021). Best therapeutic practices for the use of antibacterial agents in finfish aquaculture: a particular view on European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) in Mediterranean aquaculture. Review in Aquaculture, 13, 1285-1323. https://doi.org/10.1111/raq.12523.
Dadar, M., Dhama, K., Vakharia, V. N., Hoseinifar, S. H., Karthik, K., Tiwari, R., Khandia, R., Munjal, A., Salgado-Miranda, C., & Joshi, S. K. (2017). Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Reviews in Fisheries Science and Aquaculture, 25(3), 184-217. https://doi.org/10.1080/23308249.2016.1261277.
Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569.
Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish aquaculture. Expert Review of Vaccines, 4(1), 89-101. https://doi.org/10.1586/14760584.4.1.89.
Wang, Q., Ji, W., & Xu, Z. (2020). Current use and development of fish vaccines in China. Fish & Shellfish Immunology, 96, 223-234. https://doi.org/10.1016/j.fsi.2019.12.010,
Assefa A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary Medicine International, 2018, 5432497. https://doi.org/10.1155/2018/5432497.
Mutoloki, S., Munang’andu, H. M., & Evensen, Ø. (2015). Oral vaccination of fish – antigen preparations, uptake, and immune induction. Frontiers in Immunology, 6, 519. https://doi.org/10.3389/fimmu.2015.00519.
Behera, T., & Swain, P. (2014). Antigen encapsulated alginate-coated chitosan microspheres stimulate both innate and adaptive immune responses in fish through oral immunization. Aquaculture International, 22(2), 673-688. https://doi.org/10.1007/s10499-013-9696-8.
Kiataramgul, A., Maneenin, S., Purton, S., Areechon, N., Hirono, I., Brocklehurst, T. W., & Unajak, S. (2020). An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture, 521, 1-8. https://doi.org/10.1016/j.aquaculture.2020.735022.
Lekang, O. (2015). Feeding equipment. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture: Series in food science, technology and nutrition. Woodhead Publishing. 349-368. https://doi.org/10.1016/b978-0-08-100506-4.00014-3.
Akbar, I., Radhakrishnan, D. K., Venkatachalam, R., Sathrajith, A. T., & S, S. (2014). Standartization of the bioencapsulation of probiotics and oil emulsion in Artemia parthenogenetica. International Journal of Research in Fisheries and Aquaculture, 4(3), 122-125.
Dey, A., Ghosh, K., & Hazra, N. (2015). An overview on bioencapsulation of live food organisms with probiotics for better growth and survival of freshwater fish juveniles. International Journal of Research in Fisheries and Aquacultures, 5(2), 74-83.
Rudtanatip, T., Boonsri, B., Praiboon, J., & Wongprasert, K. (2019). Bioencapsulation efficacy of sulfated galactans in adult Artemia salina for enhancing immunity in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 94, 90-98 https://doi.org/10.1016/j.fsi.2019.08.065.
Pridgeon, J. W., & Klesius, P. H. (2012). Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 7(048), 1-16. https://doi.org/10.1079/pavsnnr20127048.
Shoemaker, C. A., Klesius, P. H., Evans, J. J. & Arias, C. R. (2009). Use of modified live vaccines in aquaculture. Journal of the World Aquaculture Society, 40(5),573-585. https://doi.org/10.1111/j.1749-7345.2009.00279.x.
Matsumoto, M., Araki, K., Hayashi, K., Takeuchi, Y., Shiozaki, K., Suetake, H., & Yamamoto, A. (2017). Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili. Fish & Shellfish Immunology, 67, 263-269. https://doi.org/10.1016/j.fsi.2017.06.025.
Firdaus-Nawi, M., Yusoff, S.M., Yusof, H., Abdullah, S.-Z. & Zamri-Saad, M. (2013). Efficacy of feed-based adjuvant vaccine against Streptococcus agalactiae in Oreochromis spp. in Malaysia. Aquaculture Research, 45(1), 87-96. https://doi.org/10.1111/j.1365-2109.2012.03207.x.
Levine, M., & Sztein, M. (2004). Vaccine development strategies for improving immunization: The role of modern immunology. Nature Immunology, 5(5), 460–464. https://doi.org/10.1038/ni0504-460.
Mohd-Aris, A., Muhamad-Sofie, M., Zamri-Saad, M., Daud, H. M., & Ina-Salwany, M. Y. (2019). Live vaccines against bacterial fish diseases: A review. Veterinary World, 12(11), 1806–1815. https://doi.org/10.14202/vetworld.2019.1806-1815.
Wang, J., Zou, L. L., & Li, A. X. (2014). Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 40(2), 392–398. https://doi.org/10.1016/j.fsi.2014.07.028.
Laith, A., Abdullah, M., Nurhafizah, W., Hussein, H., Aya, J., Effendy, A., & Najiah, M. (2019). Efficacy of live attenuated vaccine derived from the Streptococcus agalactiae on the immune responses of Oreochromis niloticus. Fish & Shellfish Immunology, 90, 235-243. https://doi.org/10.1016/j.fsi.2019.04.052.
Ye, H., Xu, Z., Tao, Z., Li, W., Li, Y., Yang, A., Wang, W., Yin, X., &Yan, X. (2021). Efficacy and safety of Pseudomonas plecoglossicida mutant ΔtssD-1 as a live attenuated vaccine for the large yellow croaker (Larimichthys crocea). Aquaculture, 531, 735976. https://doi.org/10.1016/j.aquaculture.2020.735976.
Vartak, A., & Sucheck, S. J. (2016). Recent advances in subunit vaccine carriers. Vaccines, 4(2), 12. https://doi.org/10.3390/vaccines4020012.
Muktar, Y., Tesfaye, S., & Tesfaye, B. (2016). Present status and future prospects of fish vaccination: A review. Journal of Veterinary Science and Technology, 7(2), 299. https://doi.org/10.4172/2157-7579.1000299
Shahin, K., Pirezan, F., Rogge, M., Lafrentz, B. R., Shrestha, R. P., Hildebrand, M., Lu, F., Hogen Esch, H., & Soto, E. (2020). Development of IglC and GroEL recombinant vaccines for francisellosis in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 105, 341-349. https://doi.org/10.1016/j.fsi.2020.07.045.
Atujona, D., Huang, Y., Wang, Z., Jian, J., & Cai, S. (2019). Vibrio harveyi (VirB11) recombinant vaccine development against vibriosis in orange‐spotted grouper (Epinephelus coioides). Aquaculture Research, 50(9), 2628-2634. http://dx.doi.org/10.1111/are.14220.
Charoonnart, P., Purton, S., & Saksmerprome, V. (2018). Applications of microalgae biotechnology for disease control in aquaculture. Biology, 7(2), 24. https://doi.org/10.3390/biology7020024.
Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Kabir Chowdhury, M., Parsaeimehr, A., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197-213. https://doi.org/10.1007/s10811-017-1234-z.
Camacho, F., Macedo, A., & Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine Drugs, 17(6), 312. https://doi.org/10.3390/md17060312.
Ferdous, U. T., & Yusof, Z. N. B. (2021). Medicinal prospects of antioxidants from algal sources in cancer therapy. Frontiers in Pharmacology, 12, 593116. https://doi.org/10.3389/fphar.2021.593116.
Abidin, A. A. Z., Yokthongwattana, C., & Yusof, Z. N. B. (2021b). Carotenogenesis in Nannochloropsis oculata under salinity and oxidative stress. Sains Malaysiana, 50(2), 327-337. http://dx.doi.org/10.17576/jsm-2021-5002-05.
Sarker, P. K., Kapuscinski, A. R., Lanois, A. J., Livesey, E. D., Bernhard, K. P., & Coley, M. L. (2016). Towards sustainable aquafeeds: Complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). Plos One, 11(6), e0156684. https://doi.org/10.1371/journal.pone.0156684.
Abidin, A. A. Z., Suntarajh, M., & Yusof, Z. N. B. (2020a). Microalgae as a vaccine delivery system to aquatic organism. In M. A. Alam, J. Xu, & Z. Wang (Eds.). Microalgae biotechnology for food, health and high value products, p. 353-372. Singapore: Springer. https://doi.org/10.1007/978-981-15-0169-2.
Michelet, L., Lefebvre-Legendre, L., Burr, S. E., Rochaix, J. -D. & Goldschmidt-Clermont, M. (2011). Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnology Journal, 9(5), 565-574. https://doi.org/10.1111/j.1467-7652.2010.00564.x.
Kwon, K., Lamb, A., Fox, D., & Jegathese, S. J. (2019). An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). Fish & Shellfish Immunology, 87, 414-420. https://doi.org/10.1016/j.fsi.2019.01.038.
He, Y., Peng, H., Liu, J., Chen, F., Zhou, Y., & Chen, H. W. (2017). Chlorella sp. transgenic with Scy-hepc enhancing the survival of Sparus macrocephalus and hybrid grouper challenged with Aeromonas hydrophila. Fish & Shellfish Immunology, 73, 22-29. https://doi.org/10.1016/j.fsi.2017.11.051.
Charoonnart, P., Worakajit, N., Zedler, J. A., Meetam, M., Robinson, C., & Saksmerprome, V. (2019). Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Scientific Reports, 9(1), 3164. https://doi.org/10.1038/s41598-019-39539-x.
Feng, S., Feng, W., Zhao, L., Gu, H., Li, Q, Shi, K., Guo, S., & Zhang, N. (2014). Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Archives of Virology, 159, 519–525. https://doi.org/10.1007/s00705-013-1856-7
Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity. Frontiers in Microbiology, 6, 1376. https://doi.org/10.3389/fmicb.2015.01376.
Specht, E., Miyake-Stoner, S., & Mayfield, S. (2010). Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters, 32(10), 1373–1383. https://doi.org/10.1007/s10529-010-0326-5.
Yagi, Y., & Shiina, T. (2014). Recent advances in the study of chloroplast gene expression and its evolution. Frontiers in Plant Science, 5, 61. https://doi.org/10.3389/fpls.2014.00061.
Henley, W. J., Litaker, R. W., Novoveská, L., Duke, C. S., Quemada, H. D., & Sayre, R. T. (2013). Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Research, 2(1), 66-77. http://dx.doi.org/10.1016/j.algal.2012.11.001.
Nethravathy, M. U., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1882-1897. https://doi.org/10.1111/1541-4337.12500.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Nor Izzati Husna Noorhisham, Zetty Norhana Balia Yusof
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.