Density Functional Theory Investigation on the Structural and Electronic Properties of Pristine, Vacancy, and Group IV Doped Zigzag Boron Nitride Nanotubes
DOI:
https://doi.org/10.11113/mjfas.v19n1.2639Keywords:
Density functional theory, boron nitride nanotube, electronic structures, HOMO-LUMO energies, molecular electrostatic potentialsAbstract
In this work, density functional theory (DFT) calculations were conducted to study the structural and electronic properties of pure, vacancy, and group IV [i.e. carbon (C), silicon (Si), and germanium (Ge) atoms] doped boron nitride nanotubes (BNNTs). The DFT computational results obtained agree well with the literature results. The calculated B−N bond distances obtained in this study are about 1.44 Å – 1.47 Å. Among seven BNNTs, the optimized B35GeN36H12 holds the lowest local energy minimum value in this study Moreover, the structure of B35CN36H12 possesses the smallest HOMO−LUMO energy (2.17 eV) among nine BNNT models considered. The boron (B) atoms hold the positive charges, and the negative charges fall on the nitrogen (N) atoms in this work. Similar results are reported to the molecular electrostatic potentials (MEPs) of studied BNNTs. The distributions of positive and negative electrostatic potentials fall on the regions of N− and B−tips of BNNT frameworks, respectively in this report. The DFT calculations reported that the spin densities were mainly concentrated in the regions around group IV elements, such as C, Si, and Ge atoms. Therefore, we believe that these computed results will provide useful information on the adsorption of hydrogen molecules on the BNNT frameworks in the future.
References
Pease, R. S. (1952). An X–ray study of boron nitride. Acta Crystallographica, 5(3), 356-361.
Mukasyan, A. S. (2017). Boron nitride, concise encyclopedia of self–propagating high–temperature synthesis, history, theory, technology, and products. Netherlands: Elsevier Inc.
Cahill, J., Frane, W. D., Sio, C., King, G., Soderlind, J., Lu, R., Worsley, M., & Kuntz, J. (2020). Transformation of boron nitride from cubic to hexagonal under 1–atm helium. Materials Science, 109, 108078(1-8).
Tang, S. & Cao, Z. (2020). Structural and electronic properties of the fully hydrogenated boron nitride sheets and nanoribbons: insight from first–principles calculations. Chemical Physics Letters. 488, 67-72.
Maryam–Mirzaei & Mahmoud–Mirzaei (2010). Electronic Structure of Sulfur Terminated Zigzag Boron Nitride Nanotube: A Computational Study. Solid State Science, 12, 1337-1340.
Beheshtian, J., Soleymanabadi, H., Peyghan, A. A., & Bagheri, Z. (2013). A DFT Study on the functionalization of a BN nanosheet with PCX, (PC = Phenyl Carbamate, X= OCH3, CH3, NH2, NO2 and CN). Applied Surface Science, 268, 634-441.
Ang, L. S., Sulaiman, S., & Mohamed–Ibrahim, M. I. (2012). Effects of spin contamination on the stability and spin density of wavefunction of graphene: comparison between first principle and density functional methods. Sains Malaysiana, 41(4), 445-452.
Ponce–Pérez, R. & Cocoletzi, G. H. (2017). Hydrogenated boron nitride monolayer functionalization: a density functional theory study. Computational and Theoretical Chemistry, 1111, 33-39.
Xu, H, Wang, Q., Fan, G., & Chu, X. (2018). Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs. Theoretical Chemistry Accounts. 137, 104(1-15).
Tang, C. Y., Zulhairun A. K., & Wong T. W. (2019). Water transport properties of boron nitride nanosheets incorporated thin film nanocomposite membrane for salt removal. Malaysian Journal of Fundamental and Applied Sciences,15(6), 790-794.
Chettri, B., Patra, P. K., Hieu, N. N., & Rai, D. P. (2021). Hexagonal boron nitride (h–BN) nanosheet as a potential hydrogen adsorption material: a density functional theory (DFT) study. Surfaces and Interfaces. 24, 101043(1-8).
Shah–Naqvi, S. A. A., Toh, P. L., Lim, Y. C., Wang, S. M., Ang, L. S., & Sim, L. C. (2022). Computational density functional theory investigation of stability and electronic structures on boron nitride systems doped with/without group IV elements. Malaysian Journal of Chemistry, 24(1), 85-93.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 09. United Sate: Gaussian, Inc.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Toh Pek Lan Lan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.