Effect of dopants [Gd3+, Sm3+, Ca2+, Sr2+ and Ba2+] on the performance characteristics of ceria based electrolytes for application in solid oxide fuel cells


  • M.L. Reni
  • A. Samson Nesaraj




Doped ceria based electrolytes, physical and electrical characterization, solid oxide fuel cells, low temperature application


Doped CeO2 based materials are now-a-days proposed as alternate electrolyte materials for solid oxide fuel cells (SOFCs) working at low temperature (~723 – 873 K). In this research work, nanoparticles of CeO2 doped with Gd3+, Sm3+, Ca2+, Sr2+ and Ba2+were prepared by a simple homogeneous chemical precipitation method. The prepared materials (after heat treatment at 1023 K for 2 hours) were systematically characterized by XRD, EDAX analysis, FTIR , particle size analysis and SEM.  Lattice parameters were calculated from the XRD data. The XRD results indicate that all the doped ceria samples studied are single phase with a cubic fluorite structure. The average particle size of the doped ceria powder was about 48 – 115 nm and the particles have shown narrow particle size distribution patterns. AC impedance spectroscopy studies performed on the sintered specimens have shown better oxide ion conductivity values and hence these materials may be suitable for application as electrolyte materials in solid oxide fuel cells working at low temperature (~723 – 873 K). 




A.Stamatis, C.Vinni, D.Bakalis, F.Tzorbatzoglou, P. Tsiakaras, Energies. 5 (2012) 4268.

M.S.Y. Ebaid, M.Y. Mustafa, Jordan J. Mech. Indus. Eng. 5 (2011) 185.

M. Cimenti, J.M. Hill, Energies. 2 (2009) 377.

S. Zha, C. Xia, G.Meng, J. Power Sources. 115 (2003) 44.

M. Nakayama, M. Martin, Phy. Chem. Chem. Phys. 11 (2009) 3241.

Y.-P. Fu, S.-H. Chen, Ceram.Int. 36 (2010) 483.

Z.Tianshu, P.Hing, H.Huang, J. Kilner, Solid State Ionics. 148 (2002) 567.

T. Kudo, H. Obayashi, J. Electrochem. Soc. 123 (1976) 415.

F.-Y.Wang, B.-Z.Wan, S.Cheng, J. Solid State Electrochem. 9 (2005) 168.

A.S.Nesaraj, I. Arul Raj, R. Pattabiraman, J. Iran. Chem. Soc. 7 (2010) 564.

J.J. Ketzial, A.S. Nesaraj, J. Ceram. Process. Res. 12 (2011) 74.

D.Radhika, A.S.Nesaraj, Asian J. Res. Chem. 4 (2011) 1447.

X. Guan, H. Zhou, Z. Liu, Y. Wang, J. Zhang, Mater. Res. Bull. 43 (2008) 1046.

Y.D. Zhena, A.I.Y. Tok, S.P. Jiang, F.Y.C. Boey, J. Power Sources. 178 (2008) 69.

S. Dikmen, J. Alloy. Compd. 491 (2010) 106.

V. Singh, S. Babu, A.S.Karakoti, A. Agarwal, S. Seal, J. Nanosci. Nanotechnol. 10 (2010) 1.

T. Fanghänel, V. Nec, Pure Appl. Chem. 74 (2002) 1895.

X. Chao, Z.Junwu, Y.Xujie, L.Hude, W. Xin, J. Rare Earth. 26 (2008) 51.

J.Gao, F.Guan, Y.Ma, W.Yang, J.Kang, H.Deng, Y. Qi, Rare Metals. 20 (2001) 217.

N. Dhananjaya, H.Nagabhushana, B. Mater. Sci. 35 (2012) 519.

M.Y.Chenga, D.H.Hwanga, H.S. Sheub, B.J. Hwanga, J. Power Sources. 175 (2008) 137.

S. Yan, M. Kim, S.O. Salley, K.Y.S. Ng, Appl. Catal. A-Gen. 360 (2009) 163.

R. Wurm, O. Dernovsek, P. Greil, J. Mater. Sci. 34 (1999) 4031.

Ardelean, M. Todera, J. Optoelectronic. Adv. Mater. 8 (2006)1118.

Z. Zhan, T.L. Wen, H.Tu, Z.Y. Lu, J. Electrochem. Soc. 148 (2001) A 427 – A432.

B.C.H. Steele, K. Zhang, R.A. Rudkin, N. Kiratzis, M. Christie, in: M. Dokiya, O. Yamamoto, H. Tagawa, S.C. Singhal (Eds.), Proc. Fourth International Symposium on Solid Oxide Fuel Cells, (SOFC-IV), NJ, 1995, p.1028.

J.R. Jurado, J. Mater. Sci. 36 (2001) 1133.

T. Ishihara, K. Sato, Y. Takita, J. Am. Ceram. Soc. 79 (1996) 913.

M. Godickemeiner, K. Sasaki, L.J. Gauckler, in: M. Dokiya, O. Yamamoto, H. Tagawa, S.C. Singhal (Eds.), Proc. Fourth International Symposium on Solid Oxide Fuel Cells, (SOFC-IV), NJ, 1995, p.1072.

M. Sahibsada, R.A. Rudkin, B.C.H. Steele, I.S. Metcalfe, J. A. Kilner, in: U. Stimming, S.C. Singhal, H. Tagawa, W. Lehner (Eds.), Proc. Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), NJ, 1997, p. 244.

Y.Gu, G.Li, G. Meng, D. Peng, Mater. Res. Bull. 35 (2000) 297.

L. Fan, C. Wang, M. Chen, B. Zhu, J. Power Sources. 224 (2013) 154.