Phosphorescent Vapochromic Responses of Copper(I) Complex Bearing Pyrazole Ligands for Detection of Alcohol Derivatives


  • Nur Fatiha Nur Ghazalli Universiti Sains Malaysia
  • Nurul Husna Sabran Universiti Teknologi Malaysia
  • Juan Matmin Universiti Teknologi Malaysia
  • Mohamad Azani Jalani Universiti Sains Islam Malaysia
  • Hendrik Oktendy Lintang Universiti Teknologi Malaysia



Phosphorescent, pyrazole ligands, metal-metal Interactions, vapochromic chemosensor.


The methodical study of trinuclear copper(I) metal complexes phosphorescent vapochromic chemosensor via metal-metal interactions for sensing various volatile organic compounds has piqued the interest of many researchers. Herein, we highlighted the performance of chemosensors trinuclear copper(I) pyrazolate complexes (2Pz1‒2Pz5) with different molecular design short alkyl side chains from the respective pyrazole ligands. The synthesized complexes had demonstrated a high phosphorescent sensing capacity of various alcohol derivatives. Due to weak metal-metal interactions, the complexes give emission bands centered around 553-644 nm at an excitation of 280 nm. We found that the only 2Pz3 chemosensors showed quenching phenomena with a significant decrease in its emission intensity of 100% for exposure in 5 minutes with irreversible performance. Interestingly, we also found that the shifting of the emission center due to the disruption of metal-metal interaction performed by chemosensor 2Pz5 resulting in the best detection performance of methanol and ethanol (∆λ= 60 nm) and propanol (∆λ = 22 nm) showing autonomous recovery within 15 minutes. Based on the findings, the specific balance, such as rigidity and amphiphilicity in the molecular design of chemosensors, is important for the detection of vapors via supramolecular interactions.


H. Jiang, Y. Wang, Q. Ye and G. Zou, “Polydiacetylene-based colorimetric sensor microarray for volatile organic compounds”, Sensors and Actuators B, 143(2), 789–794, (2010).

A. D. F. Dunbar, S. Brittle, T. H. Richardson, J. Hutchinson and C. A. Hunter, “Detection of Volatile Organic Compounds Using Porphyrin Derivatives”, Journal of Physical Chemistry B, 114 (36), 11697–11702, (2010).

K. Duarte, C. I. L. Justino, A. C. Freitas, A. C. Duarte and T. A. P. Rocha-Santos, “Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air”, Trends in Analytical Chemistry, 53, 21–32. (2014).

P. Kumar, A. Deep, K-H. Kim and R. J. C. Brown, “Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds”, Progress in Polymer Science, 45, 102-118, (2015).

Q. Zhao, F. Li and C. Huang, “Phosphorescent Chemosensors Based on Heavy–Metal Complexes”, Chemical Society Reviews, 39(8), 3007-3030, (2010).

D-L. Ma, V. P-Y. Ma, D. S-H. Chan, K-H. Leung, H-Z. Hea and C-H. Leung, “Recent Advances in Luminescent Heavy Metal Complexes for Sensing”, Coordination Chemistry Reviews, 256(23-24), 3087-3113, (2012).

H. O. Lintang, N. F. Ghazalli and L. Yuliati, “Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives”, IOP Conf. Series: Materials Science and Engineering, 349, 012023 (2018).

Q. Zhao, F. Li, and C. Huang, “Phosphorescent chemosensors based on heavy-metal complexes”, Chemical Society Review, 39 (8), 3007-3030, (2010).

D-L. Ma, V. P-Y. Ma, D. S-H. Chan, K-H. Leung, H-Z. He and C-H. Leung, “Recent advances in luminescent heavy metal complexes for sensing”, Coordination Chemistry Reviews, 256, 3087–3113, (2012).

X. Zhang, B. Li, Z-H. Chen and Z-N. Chen, “Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs)”, Journal of Materials Chemistry, 22 (23), 11427-11441, (2012).

A. Kobayashi and M. Kato, M. “Vapochromic Platinum (II) Complexes: Crystal Engineering toward Intelligent Sensing Devices”, European Journal of Inorganic Chemistry, 27, 4469-4483, (2014).

T. W. Bell and N. M. Hext, Supramolecular optical chemosensors for organic analytes, Chemical Society Reviews, 33 (9), 589-598, (2014).

F. Mancin, E. Rampazzo, P. Tecilla and U. Tonellato, “Self-assembled fluorescent chemosensors”, Chemistry—A European Journal, 12 (7), 1844-1854, (2006).

C.C. Nagel, Preparation of vapochromic double complex salts, Europ. Patent Appl. EP, 277003, (1998).

G. D. Lancaster, G. A. Moore, M. L. Stone and W. K. Reagen, Volatile organic compound sensing devices, U.S. Patent 5, 445795, (1995).

K. R. Mann, C. A. Daws, C. L. Exstrom, D. E. Janzen and M. Pomije, Vapochromic platinum-complexes and salts, U.S. Patent 5, 766952, (1998).

O.S. Wenger, “Vapochromism in Organometallic and Coordination Complexes: Chemical Sensors for Volatile Organic Compounds”, Chemical Reviews,113 (5), 3686-3733, (2013).

N. F. Ghazalli, L. Yuliati, S. Endud, M. Shamsuddin and H. O. Lintang, Vapochromic Copper(I) Pyrazolate Complex Materials for Phosphorescent Chemosensors of Ethanol, Advanced Materials Research, 970, 44-47, (2014).

H. O. Lintang, N. F. Ghazalli and L. Yuliati, Supramolecular Phosphorescent Trinuclear Copper(I) Pyrazolate Complexes for Vapochromic Chemosensors of Ethanol, Indonesian Journal of Chemistry, 17, 191–202, (2017).

M. A. Omary, M. A. Rawashdeh-Omary, M. W. A Gonser, O. Elbjeirami, T. Grimes and T. R. Cundari, “Metal Effect on the Supramolecular Structure, Photophysics, and Acid–Base Character of Trinuclear Pyrazolate Coinage Metal Complexes”, Inorganic Chemistry, 44(23), 8200-8210, (2005).

A. Kishimura, T. Yamashita and T. Aida, T. “Phosphorescent Organogels via “Metallophilic” Interactions for Reversible RGB−Color Switching”, Journal of the American Chemical Society, 127 (1), 179-183, (2005).

M. Enomoto, A. Kishimura and T. Aida, “Coordination metallacycles of an achiral dendron self-assemble via metal-metal interaction to form luminescent superhelical fibers”, Journal of the American Chemical Society, 123 (23), 5608-5609T, (2001).

A. Kobayashi and M. Kato, “Vapochromic Platinum (II) Complexes: Crystal Engineering toward Intelligent Sensing Devices”, European Journal of Inorganic Chemistry, 27, 4469-4483, (2014).