Synthesis and Characterization of alumina nanofiber reinforced Poly ether ether ketone (PEEK)

Authors

  • Tg Mahizatulazwa Tg Kamaruddin
  • Liew Kong Yong
  • Mohd Ridzuan Noordin

DOI:

https://doi.org/10.11113/mjfas.v7n2.256

Keywords:

PEEK, Alumina nanofiber, Dispersion, Crystallinity, Thermal properties,

Abstract

The effects of reinforcing Poly ether etherketone (PEEK) with alumina nanofiber have been studied. The nano-composites were prepared by first dispersing the fibre in solvent and then undertaking the synthesis of PEEK. Nanocomposite materials with 1wt.%, 2.5wt.% and 5wt.% of alumina nanofiber have been prepared successfully by dispersing the alumina nanofiber in Sulfolane as solvent and upon sonication for 30 minutes. Transmission electron microscopy and scanning electron micrographs indicated excellent dispersion and interactions between PEEK matrixes with the added alumina nanofibers. Differential scanning calorimeter shows changes in melting and crystallization point and degree of crystallinity for 1wt.% nanocomposites. The result also indicated that alumina nanofiber serves as nucleating agents in PEEK nanocomposites. The X-ray diffractogram data indicated that the crystallinity of the PEEK nanocomposites was highest for 1wt.% alumina nanofiber. The thermogravimetry analysis, shows that thermal stability for alumina nanofiber/PEEK nano-composites was enhanced compared to that of the pure PEEK.

References

P. Patela, T. R. Hull, R. W. McCabe , D. Flath, J. Grasmederc, M. Percy, Polymer Degradation and Stability., 95 (2010) 709

R. K. Goyal, Y. S. Negi and A. N. Tiwari, Journal of Applied Polymer Science., 100 (2006) 4623–4631

B. Safadi, R. Andrews, E. A. Grulke, J. Appl. Polymer Sci., 84 (2002) 2660

S. S. Park, N. Bernet, S. de La Roche and H.T. Hahn, J. of Composite Mater., 37 (2003) 465

F. Zhihang, K. Hsiao and S. G Advani, Carbon., 42(2004) 863-868.

M. Zhang, J. Xu, Z. Zhang, H. Zeng, X. Xiong, Polymer., 37 (1996) 5151–5158

C. Gauthier, L. Chazeau, T. Prasse and J.Y. Cavaille. Composites Science and Technology., 65 (2005) 335-343

K. R. Reddy, V. Parameswaran, K. Sundaraiah, R.K. Singh, K.U. Bhasker Rao, N.G.R. Iyengar, Journal of Reinforced Plastics and Composites., 29 (2010) 2771-2781

G. Pan, Q. Guo, A. Tian, Z. He, Materials Science and Engineering: A., 492 (2008) 383-391.

R. K. Goyal, A.N. Tiwari,U. P. Mulik, Y. S. NegiJournal of Applied Polymer Science., 110.(2008) 3379–3387

M. C. Kuo, C. M. Tsai., J. C. Huang, M. Chen.. Materials Chemistry and Physics., 90 (2005) 185-195

J. Liu, T. Liu, S. Kumar, Polymer., 46 (2005) 3419–3424

J. Shibata, K.Fujii, N.Murayama and Yamamoto., 20 (2002) 263-269

L.H. Perng, C.J. Tsai, Y.C. Ling, Polymer., 40 (1999) 7321-7329

J. Yin, A. Zhang, K. Y. Liew, W. Lihua., Polymer Bulletin., 61 (2008) 157

J.N. Hay, J.I. Langford, J.R. Lloyd, Polymer., 30 (1989) 489–93.

C.L Wei, M. Chen and F.E. Yu. Polymer., 44 (2003) 8185

K. Lozano, E. V. Barrera, Journal of Applied Polymer Science., 79 (2001) 125-133

I. Y. Phang, K.P. Pramoda, T. Liu and C. H. He , Polymer International., 53 (2004) 1282–1289

R. B. Arup, T.V. Sreekumar, T. Liu, S. Kumar,L. M. Ericson, R. H. Hauge , R. E. Smalley, Polymer., 44 (2003) 2373–2377

G. Tsagaropolous, A. Eisenberg, Macrmolecules., 28 (1995) 6067.

V. Arrighia, I. J. McEwena, H. Qiana, M. B. Serrano Prietob, Polymer., 44 (2003) 6259

C. Weidenthaler, Nanoscale., 3 (2011) , 792-811

J. Sandler, P. Werner, M. S. P. Shaffer , V. Demchuk, V. Altstädt and A. H. Windle, Composites Part A: Applied Science and Manufacturing ., 33 ( 2002) 1033-1039

Downloads

Published

24-07-2014