Aluminum Doped Titanium Dioxide Thin Film for Perovskite Electron Transport Layer
DOI:
https://doi.org/10.11113/mjfas.v18n5.2555Keywords:
Titanium Dioxide, Aluminum, Thin Film, Perovskite Solar Cell, Electron TransportAbstract
Aluminum (Al) doped titanium dioxide thin film with different Al doping concentration (Al = 0 mol%, 1 mol%, 3 mol%, 5 mol% and 7 mol%) were deposited using solution spin coating technique and the effect of Al concentration on the structural, morphological and optical properties were examine. All samples were annealed at 450°C for 1 hour. XRD reveal that the films exhibits anatase crystal phase at (101) peak orientation. Based on the FESEM and AFM image it is found that, surface morphology of the film was significantly affected with different doping concentration. Al doped titanium dioxide with 3 mol% Al concentration shows the highest transmittance compared to others samples. Consequently, it is shown that different Al doping concentration plays vital roles in producing an optimum Al doped titanium dioxide thin films samples.
References
Hernández-Granados, A., Corpus-Mendoza, A. N., Moreno-Romero, P. M., Rodríguez-Castañeda, C. A., Pascoe-Sussoni, J. E., Castelo-González, O. A., … Hu, H. (2019). Optically uniform thin films of mesoporous TiO2 for perovskite solar cell applications. Opt. Mater. (Amst)., 88(August), 695–703.
S. Nadzirah, K. L. Foo, and U. Hashim. (2015). Morphological reaction on the different stabilizers of titanium dioxide nanoparticles. Int. J. Electrochem. Sci., 10(7), 5498–5512.
Elfanaoui, A., Elhamri, E., Boulkaddat, L., Ihlal, A., Bouabid, K., Laanab, L., … Portier, X. (2011). Optical and structural properties of TiO2 thin films prepared by sol-gel spin coating. Int. J. Hydrogen Energy, 36(6), 4130–4133.
M. F. Hossain, S. Naka, and H. Okada. (2018). Annealing effect of E-beam evaporated TiO2 films and their performance in perovskite solar cells. J. Photochem. Photobiol. A Chem., 360(February), 109–116.
P. M. Perillo, D. F. Rodríguez, and N. G. Boggio. (2014). TiO2 nanotubes for room temperature toluene sensor. OALib, 01(07), 1–7.
D. Komaraiah, E. Radha, J. Sivakumar, M. V. Ramana Reddy, and R. Sayanna. (2019). Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surfaces and Interfaces, 17(July), 100368.
H. Phattepur, B. S. Gowrishankar, and G. Nagaraju. (2019). Synthesis of gadolinium-doped TiO2 thin films by sol–gel spin coating technique and its application in degradation of rhodamine-B. Indian Chem. Eng., 61(2), 167–181.
Bensouici, F., Bououdina, M., Dakhel, A. A., Souier, T., Tala-Ighil, R., Toubane, M., … Cai, W. (2016). Al doping effect on the morphological, structural and photocatalytic properties of TiO2 thin layers.Thin Solid Films. 616, 655–661.
S. Wu, Z. Weng, X. Liu, K. W. K. Yeung, and P. K. Chu. (2014). Functionalized TiO2 based nanomaterials for biomedical applications. Adv. Funct. Mater., 24(35), 5464–5481.
M. Fitra, I. Daut, M. Irwanto, N. Gomesh, and Y. M. Irwan. (2013). TiO2 dye sensitized solar cells cathode using recycle battery. Energy Procedia, 36, 333–340.
S. N. Sadikin, M. Y. A. Rahman, A. A. Umar, and M. M. Salleh. (2017). Effect of spin-coating cycle on the properties of TiO2 thin film and performance of DSSC. 12, 5529–5538.
M. M. Abdoul-Latif, J. Xu, J. X. Yao, and S. Y. Dai. (2017). Au Nanoparticles Doped TiO Mesoporous Perovskite Solar Cells. Mater. Sci. Forum.
S. Bhat, K. M. S. Prasad, K. M. Parvathy, and V. S. M. Dharmaprakash. (2019). Effect of Al doping on the carrier transport characteristics of TiO2 thin films anchored on glass substrates. Appl. Phys. A, 125(3), 1–11.
G. Liu, X. Wang, Z. Chen, H. M. Cheng, and G. Q. (Max) Lu. (2009). The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. J. Colloid Interface Sci., 329(2), 331–338.
M. Taylor, R. C. Pullar, I. P. Parkin, and C. Piccirillo. (2020). Nanostructured titanium dioxide coatings prepared by Aerosol Assisted Chemical Vapour Deposition (AACVD). J. Photochem. Photobiol. A Chem., 400(June),. 112727.
R. Kumar, N. Arorab, and N. Sharmac. (2017). Study of spin coated titanium dioxide films. Int. J. Pure Appl. Phys., 13(1), 229–231.
D. K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, and S. Lettieri. (2017). Photoluminescence mechanisms in anatase and rutile TiO2. J. Phys. Chem. C, 121(16), 9011–9021.
Y. M. Sung. (2013). Deposition of TiO2 blocking layers of photovoltaic cell using rf magnetron sputtering technology. Energy Procedia, 34, 582–588.
S. Kumar, T. Vats, S. N. Sharma, and J. Kumar. (2018). Investigation of annealing effects on TiO2 nanotubes synthesized by a hydrothermal method for hybrid solar cells. Optik (Stuttg)., 171(April), 492–500.
M. S. Rahim, M. Z. Sahdan, A. S. Bakri, N. D. M. Said, S. H. A. Yunus, and J. Lias. (2017). Effect of gas on the structural and electrical properties of titanium dioxide film. 030134.
F. I. M. Fazli, N. Nayan, M. K. Ahmad, M. L. M. Napi, N. K. A. Hamed, and N. S. Khalid. (2016). Effect of annealing temperatures on TiO2 thin films prepared by spray pyrolysis deposition method. Sains Malaysiana, 45(8), 1197–1200.
A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan. (2013). Effect of annealing temperature on nanocrystalline TiO2 thin filmsprepared by sol-gel dip coating method. Optik (Stuttg)., 124(23), 6201–6204.
El Haimeur, A., Makha, M., Bakkali, H., González-Leal, J. M., Blanco, E., Dominguez, M., & Voitenko, Z. V. (2020). Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer. Sol. Energy, 195(November 2019), 475–482.
Liu, H., Zhang, Z., Zhang, X., Cai, Y., Zhou, Y., Qin, Q., … Liu, J. M. (2018). Enhanced performance of planar perovskite solar cells using low-temperature processed Ga-doped TiO2 compact film as efficient electron-transport layer. Electrochim. Acta, 272, 68–76.
G. Yang, H. Tao, P. Qin, W. Ke, and G. Fang. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 4(11), 3970–3990.
P. Zhao, B. J. Kim, and H. S. Jung. (2018). Passivation in perovskite solar cells: A review. Mater. Today Energy, 7.
N. I. U. Xinshu, L. I. Sujuan, C. H. U. H. Ἦ, and Z. Jianguo. (2011). Preparation, characterization of Y 3 + -doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation. J. Rare Earths, 29(3), 225–229.
Zhang, H., Shi, J., Xu, X., Zhu, L., Luo, Y., Li, D., & Meng, Q. (2016). Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. J. Mater. Chem. A, 4(40), 15383–15389.
Duan, Y., Fu, N., Liu, Q., Fang, Y., Zhou, X., Zhang, J., & Lin, Y. (2012). Sn-Doped TiO2 Photoanode for dye-sensitized solar cells.. 8–13.
S. Bakardjieva and N. Murafa. (2009). Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles Václav Stengl. 114, 217–226.
Pathak, S. K., Abate, A., Ruckdeschel, P., Roose, B., Gödel, K. C., Vaynzof, Y., … Steiner, U. (2014). Performance and stability enhancement of dye-sensitized and perovskite solar cells by al doping of TiO2. Adv. Funct. Mater., 24(38), 6046–6055.
Y. S. Song, B. Y. Kim, N. I. Cho, and D. Y. Lee. (2015). Effect of Al doping on optical band gap energy of Al-TiO2 thin films. J. Nanosci. Nanotechnol., 15(7), 5228–5231.
Said, N. D. M., Sahdan, M. Z., Ahmad, A., Senain, I., Bakri, A. S., Abdullah, S. A., & Rahim, M. S. (2017). Effects of Al doping on structural, morphology, electrical and optical properties of TiO2 thin film. 030130, 030130.
S. Nadzirah and U. Hashim. (2013). Annealing effects on titanium dioxide films by Sol-Gel spin coating method. RSM 2013 IEEE Reg. Symp. Micro Nanoelectron.. 159–162.
A. Kumar, S. Mondal, S. G. Kumar, and K. S. R. Koteswara Rao. (2015). High performance sol-gel spin-coated titanium dioxide dielectric based MOS structures. Mater. Sci. Semicond. Process, 40, 77–83,
E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. Farrukh, and S. Mohamed. (2015). The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Appl. Nanosci., 993–1001.
D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, and R. Martins. (2017). High mobility hydrogenated zinc oxide thin films. Sol. Energy Mater. Sol. Cells, 163(June), 255–262.
S. Thanikaikarasan, T. Mahalingam, M. Raja, T. Kim, and Y. D. Kim. (2009). Characterization of electroplated FeSe thin films. J. Mater. Sci. Mater. Electron., 20(8), 727–734.
S. Majumder, M. Jain, and R. Katiyar. (2002). Investigations on the optical properties of sol–gel derived lanthanum doped lead titanate thin films. Thin Solid Films, 402(1), 90–98.
F. Hanini, Y. Bouachiba, and F. Kermiche. (2013). Characteristics of Al-doped TiO2 thin films grown by pulsed laser deposition Characteristics of Al-doped TiO2 thin films grown by pulsed laser deposition. January,.
J. Li, J. Xu, Q. Xu, and G. Fang. (2012). Preparation and characterization of Al doped ZnO thin films by sol-gel process. J. Alloys Compd., 542, 151–156.
N. R. Mathews, E. R. Morales, M. A. Cortés-Jacome, and J. A. Toledo Antonio. (2009). TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Sol. Energy, 83(9), 1499–1508.
J. Yu, J. C. Yu, and X. Zhao. (2002). The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. J. Sol-Gel Sci. Technol., 24(2), 95–103.
P. Malliga, J. Pandiarajan, N. Prithivikumaran, and K. Neyvasagam. (2014). Influence of film thickness on structural and optical properties of sol – gel spin coated TiO2 thin film. IOSR J. Appl. Phys., 6(1), 22–28.
Komaraiah, D., Radha, E., James, J., Kalarikkal, N., Sivakumar, J., Ramana Reddy, M. V., & Sayanna, R. (2019). Effect of particle size and dopant concentration on the Raman and the photoluminescence spectra of TiO2 :Eu 3+ nanophosphor thin films. J. Lumin., 211(March), 320–333.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Faiz Bin Hashim, Khamim Ismail, Khamim Ismail, Aizuddin Supee, Aizuddin Supee, Firdaus Omar, Firdaus Omar, Zainatul Izzah Ab Ghani, Zainatul Izzah Ab Ghani, Ain Ajeerah Ramli, Ain Ajeerah Ramli, Syariffah Nurathirah Syed Yaacob, Syariffah Nurathirah Syed Yaacob
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.