Chitosan as Bone Scaffold and Graft Materials for Bone Regeneration: A Systematic Review

Authors

DOI:

https://doi.org/10.11113/mjfas.v18n5.2518

Keywords:

Chitosan, anti-bacterial, bone graft, bone regeneration, Infectious disease.

Abstract

Chitosan is a natural biodegradable polymer made from crustacean exoskeletons (shrimp and crab). Recently, natural material is preferably used in order to prevent any side effects from synthetic material. Previous research showed that chitosan has anti-bacterial properties, which can act as a bone graft scaffold material to increase in bone regeneration process. This article discusses the antibacterial effect of chitosan in the bone regeneration process. Bone graft consists of many primary graft materials which focus on alloplastic graft composite type. Bone graft is related to bone regeneration which associated with the process of secondary/indirect bone healing. The main trait of bone graft material is that it is not toxic to the chitosan’s host cell. Chitosan’s anti-bacterial effects can be associated with one of the three phases of bone defect healing, which is inflammation phase that acts to prevent bacterial invasion as an infectious disease in bone injury. Because of this, it can accelerate the polarization of macrophage M1 (secrete pro-inflammatory cytokine) to macrophage M2 (secrete anti-inflammatory cytokine) that relates to osteoblastogenesis. Osteoblastogenesis relates to the increase of osteoblast synthesis, deposition and mineralization of extracellular matrix leading to the maturation of osteoblast become osteocyte called ossification process.

References

Hasib, A., Wahjuningrum, D. A., Ibrahim, M. H. R., Kurniawan, H. J., Ernawati, R., Hadinoto, M. E. K., Mooduto, L. (2020). ALP (alkaline phosphatase) expression in simple fracture incident in rat (rattus norvegicus) femur bone supplemented by apis mellifera honey. Journal of International Dental and Medical Research,13(3), 887-891.

Wahjuningrum, D. A., Subijanto, A., Taqiya, A. K., Anggini, F. D., Hasib, A., Mooduto, L., Puteri, F. H. (2019). Cytotoxicity of chitosan derived from shrimp for bone scaffold on adipose tissue-derived mesenchymal stem cells. Asia Pacific Journal of Medical Toxicology, 8(4), 115-117.

Mooduto, L., Wahjuningrum, D. A., Agatha, P. A., Lunardhi, G. J. (2019). Antibacterial effect of chitosan from squid pens against Porphyromonas gingivalis bacteria. Iran Journal of Microbiology, 11(2), 177-180.

Kalfas, I. H. (2001). Principles of bone healing. Neurosurgery Focus, 10(4), 1-4.

Secreto, F. J., Hoeppner, L. H., Westendorf, J. J. (2009). Wnt signaling during fracture repair. Current Osteoporosis Reports, 7(2), 64-69.

Jacob, S. A. (2017). Guided tissue regeneration: A review. Journal of Dental Health Oral Disorders & Therapy, 6(3), 67-73.

Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551-555.

Bahney, C. S., Zondreyan, R. L., Allison, P., Theologis, A., Ashley, J. W., Ahn, J. Miclau, T., Marcucio, R. S., Hankenson, K. D. (2019). Cellular biology of fracture healing. Journal of Orthopaedic Research, 37,35-50.

Baker, C. E., Lotridge, S. N. M., Hysong, A. A., Posey, S. L., Robinette, J. P., Blum, D. M., Benvenuti, M. A., Cole, H. A., Egawa, S., Okawa, A., Saito, M., McCarthy, J. R., Nyman, J. S., Yuasa, M., Schoenecker, J. G. (2018). Bone fracture acute phase response-a unifying theory of fracture repair: clinical and scientific implications. Clinical Review in Bone and Mineral Metabolism, 16, 142-158.

Arnold, K., Sampaio, M., Schweitzer, M. (2013). Fracture complications and the role of imaging. Sports Medicine Journal, 52-9.

Einhorn, T. A., & Gerstenfeld, L. C. (2014). Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology, 11(1), 45-54.

Oryan, A., Monazzah, S., Sadegh, A. B. (2015). Bone injury and fracture healing biology. Biomedical Environmental Science, 28(1), 57-71.

Sathyendra, V., & Darowish, M. (2013). Basic science of bone healing. Hand Clinics, 29, 473-481.

Loi, F., Cordova, L.A., Pajarinen, J., Lin, T. J., Yao, Z., Goodman, S. B. (2016). Review article Inflammation, fracture and bone repair. Bone, 86, 119-130.

Mahyudin, F. (2018). Graf tulang & material pengganti tulang. Surabaya: Airlangga University Press (AUP).

Schell, H., Duda, G., N., Peters, A., Tsitsilonis, S., Johnson, K., A., Bleek, K., S. (2017). The haematoma and its role in bone healing. Journal of Experimental Orthopaedics, 4(1), 5. DOI 10.1186/s40634-017-0079-3.

Wang, W., & Yeung, K., W., K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2017: 224-247. http://dx.doi.org/10.1016/j.bioacmate.2017.05.007.

Bernhard, S., Hug, S., Stratmann, A., E., P., Erber, M., Vidoni, L., Knapp, C., L., Thomaβ, B., D., Fauler, M., Nilsson, B., Ekdahl, K., N., Fohr, K., Braun, C., K., Wohlgemuth, L., Lang, M., H., Messerer, D., A., C. (2020). Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions. Journal of Innate Immunity, 13, 225-241. DOI: 10.1159/000514885.

Pfeinffenberger, M., Damerau, A., Lang, A., Buttgereit, F., Hoff, P., Gaber, T. (2021). Fracture healing research–shift towards in vitro modeling? Biomedicines, 9, 748, https://doi.org/10.3990/biomedicines9070748.

Medhat, D., Rodriguez, C.I., Infante, A. (2019). Immunomodulatory effects of MSCs in bone healing. International Journal Molecular Science, 20, 1-17

Setiawan, F., Wahjuningrum, D., A., Utomo, D., N. (2021). The property of mesenchymal stem cells (MSCs) secretome as a bone stimulator candidate in regeneration of injured bone. Malaysian Journal of Medicine and Health Sciences, 17(1), 98-106.

Bahney, C., S., Zondreyan, R., L., Allison, P. (2019). Cellular Biology of Fracture Healing. Journal of Orthopaedic Research, 37, 35-50. DOI 10.1002/jor.24170.

Houschyar, K., S., Tapking, C., Borrelli, M., R. (2019). Wnt pathway in bone regeneration – what do we know so far. Front. Cell Dev. Biol, 6,170. DOI: 10.3389/fcell.2018.00170Bao.

Bao, Q., Chen, S., Qin, H. (2017). An appropriate Wnt/ β-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Scientific Reports, 7, 2695. DOI:10.1038/s41598-018-02705-0.

Gugliandolo, A., Fonticuli, L., Trubiani, O. (2021). oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci, 22, 5236. https://doi.org/10.3990/.

Affshana, M., & Saveethna, J. P. (2015). Healing mechanism in bone fracture. Journal of Pharmaceutical Sciences and Research, 7(7), 441-442.

Basri, H., Prakoso, A. T., Sulong, M. A., Saad, A. M. M., Ramlee, M. H., Wahjuningrum, D. A., Sipaun, S., Ochsner, A., Syahrom, A. (2019). Mechanical degradation model of porous magnesium scaffolds under dynamic immersion. Journal of Materials: Design and Application, 0(0), 1-11.

Saad, M. P. M., Prakoso, A. T., Sulong, M. A., Basri, H., Wahjuningrum, D. A. (2019). Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomechanic and Modeling in Mechanobiology, 18, 797-811.

Ressler, A. (2022). Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers, 14, 3430; https://doi.org/10.3390/polym14163430.

Kozusko, S., D., Riccio, C., Goulart, M., Bumgardner, J., Jing, X., L., Konofaos, P. (2018). Chitosan as a bone scaffold biomaterial. The Journal of Craniofacial Surgery, 29(7),1788-1793.

Downloads

Published

15-12-2022