QM/MM Study for the Reaction Mechanisms of Benzyl Alcohol with Dimethyl Carbonate over a Faujasite Zeolite Catalyst

Authors

  • Shu Xian Chong
  • Habibah A. Wahab
  • Hassan Hadi Abdallah

DOI:

https://doi.org/10.11113/mjfas.v7n2.250

Keywords:

Benzyl methyl ether, Zeolite, ONIOM,

Abstract

Benzyl methyl ether (BME) compounds are largely synthesized by the industry for use as a starting material for the synthesis of other organic compounds. In order to achieve the target of green chemistry, BME can be synthesized from benzyl alcohol and dimethyl carbonate (DMC) using a zeolite catalyst. DMC is a non toxic compound and a good methylating and carboxymethylating agent. The methylation and carboxymethylation reactions of benzyl alcohol over a 36T extended framework was investigated by ONIOM(HF/3-21g:UFF). Two pathways for the methylation reaction were found, where the first involving two transition states (TS) and the second only a single TS. Methylation via the two-TS pathway has a lower activation energy compared to the single-transition state pathway. Also, the methylation reaction is kinetically more favorable than the carboxymethylation reaction and this finding agrees well with the previous experimental results. The rate constant for the studied reactions were calculated by using the transition state theory and the rate determining step was determined.

References

L.G. Wade, Jr, Organic Chemistry, sixth ed., Pearson Prentice Hall, New Jersey, 2006.

F. Aguilar, H.N. Autrup, S. Barlow, L. Castle, R. Crebelli, W. Dekant, K.-H. Engel, N. Gontard, D.M. Gott, S. Grilli, R. Gürtler, J.C. Larsen, J.-C. Leblanc, C. Leclercq, F.X. Malcata, W. Mennes, M.R. Milana, I. Pratt, I.M.C.M. Rietjens, P.P. Tobback, F. Toldrá, The EFSA Journal, 833 (2008), 1-67.

H.F. Grützmacher, S. Dohmeier-Fischer, Int. J. Mass Spectrom., 179-180 (1998), 207-221.

W.-C. Shieh, S. Dell, O. Repic, J. Org. Chem., 67 (7) (2002), 2188-2191.

M. Selva, E. Militello, M. Fabris, Green Chem., 10 (1) (2008), 73-79.

M. Selva, Pure Appl. Chem., 79 (11) (2007), 1855-1867.

M. Selva, P. Tundo, A. Perosa, J. Org. Chem., 68 (19) (2003), 7374-7378

P. Tundo, S. Memoli, D. Herault, K. Hillc, Green Chem., 6 (2004), 609-612.

P. Tundo, M. Selva, Acc. Chem. Res., 35 (9) (2002), 706-716.

P. Tundo, Pure Appl. Chem., 73 (7) (2001), 1117-1124.

A.-A. G. Shaikh, S. Sivaram, Chem. Rev., 96 (1996), 951-976.

D.H. Olson, Zeolites, 15 (5) (1995), 439-443.

S. Kasuriya, S. Namuangruk, P. Treesukol, M. Tirtowidjojo, J. Limtrakul, J. Catal., 219 (2) (2003), 320-328.

K. Bobuatong, J. Limtrakul, Appl. Catal. A: Gen., 235 (1) (2003), 49-64.

S. Namuangruk, P. Pantu, J. Limtrakul, J. Catal., 225 (2004) , 523-530.

P. Wongthong, C. Soonthornpalin, P. Pantu, J. Limtrakul, Studies in Surface Science and Catalysis, Elsevier, 2004, pp. 1817-1822.

R. Rungsirisakun, B. Jansang, P. Pantu, J. Limtrakul, J. Mol. Struct., 733 (1-3) (2005), 239-246.

Y.X. Sun, J. Yang, L.F. Zhao, J.X. Dai, H. Sun, J. Phys. Chem. C, 114 (13) (2010), 5975-5984.

W. Panjan, J. Limtrakul, J. Mol. Struct., 654 (1-3) (2003), 35-45.

S.A. Zygmunt, L. A. Curtiss, L.E. Iton, M.K. Erhardt, J. Phys. Chem., 100 (16) (1996), 6663-6671.

A. Goursot, I. Papai, V. Vasilyev, F. Fajula, Studies in Surface Science and Catalysis, Elsevier, 1995, pp. 109-116.

X. Zheng, P. Blowers, J. Mol. Catal. A: Chem., 246 (1-2) (2006), 1-10.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

X. Nie, M.J. Janik, X. Guo, X., Liu, & C. Song, C. Catalysis Today, 165 (1) (2011), 120-128.

A. Zhu, X. Zhang, Q. Liu, Q. Zhang, Chinese J. Chem. Eng., 17 (2) (2009), 268-272.

R.K. Khanna, J.A. Tossell, K. Fox, Icarus, 112 (2) (1994), 541-544.

M.T. Nguyen, A.F. Hegarty, T.K. Ha, J. Mol. Struc.: Theochem., 150 (3-4) (1987), 319-325.

M.T. Nguyen, T. K. Ha, J. Am. Chem. Soc., 106 (3) (1984), 599-602.

B. Jönsson, G. Karlström, H. Wennerström, B. Roos, Chem. Phys. Lett., 41 (2) (1976), 317-320.

H. Fang, A. Zheng, J. Xu, S. Li, Y. Chu, L. Chen, F. Deng, J. Phys. Chem. C, 115 (15) (2011), 7429-7439.

C.A. Wight, A. I. Boldyrev, J. Phys. Chem., 99 (32) (1995), 12125-12130.

F. Louis, C.A. Gonzalez, R.E. Huie, M.J. Kurylo, Phys. Chem. A, 105 (9) (2000), 1599-1604.

W. Sangthong, M. Probst, J. Limtrakul, J. Mol. Struct., 748 (1-3) (2005), 119-127.

Downloads

Published

24-07-2014