Effect of Bee Bread on Pregnancy Outcomes and Reproductive System of Rats under Heat Stress Exposure
DOI:
https://doi.org/10.11113/mjfas.v17n6.2308Keywords:
Heat stress, bee bread, female reproduction, pregnancy outcomesAbstract
Exposure to extreme temperature during pregnancy was associated with abnormal birth outcomes including preterm birth, low birth weight, and placental abortion. Bee bread is a natural product created by bees that is highly nutritional and was recommended for human consumption as a source of high energy and protein. Hence, this study aims to determine the effect of bee bread on pregnancy outcomes and the reproductive system of the ovary and uterus in rats exposed to heat stress. Pregnant rats were divided into four treatment groups (Control (C: standard feeding); Treatment 1 (T1: Bee bread); Treatment 2 (T2: Heat stress) and Treatment 3 (T3: Bee bread + Heat stress)). Rats from T1 and T3 groups received bee bread (0.5 g/kg body weight/day) orally using oral gavage starting from day-0 of pregnancy until delivery while rats from T2 and T3 groups were exposed to 43˚C of heat for 45 min/day until delivery. After delivery, pregnancy outcomes were assessed and dams were euthanised. Reproductive organs were dissected and weighed. Rats in T2 group had significantly (p<0.05) decreased litter size and foetal birth weight as well as an increased percentage of resorption and increased gestation period when compared with C and T1 groups. T3 group had shown improvement as positive effects of bee bread during heat stress exposure on rats. It can be concluded that bee bread supplementation has beneficial effects on the adverse effects of pregnancy in rats subject to heat stress.
References
Phillips, C. (2016). The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East,Veterinary Journal (London, England: 1997), 218, 78–85.
Anderson, G. B., Bell, M. L. (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environmental Health Perspectives, 119(2), 210–218.
Haines, A., Kovats, R. S., Campbell-Lendrum, D., Corvalan, C. (2006). Climate change and human health: impacts, vulnerability, and mitigation. Lancet (London, England), 367(9528), 2101–2109.
Loughnan, M., Nicholls, N., Tapper, N. (2010). Mortality-temperature thresholds for ten major population centres in rural Victoria, Australia. Health Place 16(6),1287–1290.
Martiello, M. A., Giacchi, M. V. (2010). High temperatures and health outcomes: a review of the literature. Scandinavian Journal of Public Health, 38(8), 826–837.
Zeng, Q., Li, G., Cui, Y., Jiang, G., Pan, X. (2016). Estimating Temperature-Mortality Exposure-Response Relationships and Optimum Ambient Temperature at the Multi-City Level of China. International Journal of Environmental Research and Public Health, 13(3), 279.
Li, S., Baker, P. J., Jalaludin, B. B., Guo, Y., Marks, G. B., Denison, L. S., Williams, G. M. (2014). Are children׳s asthmatic symptoms related to ambient temperature? A panel study in Australia. Environmental Research, 133, 239–245.
Dahlquist, M., Raza, A., Bero-Bedada, G., Hollenberg, J., Lind, T., Orsini, N., Sjögren, B., Svensson, L., Ljungman, P. L. (2016). Short-term departures from an optimum ambient temperature are associated with increased risk of out-of-hospital cardiac arrest. International Journal of Hygiene and Environmental Health, 219(4-5), 389–397.
Lanzinger, S., Hampel, R., Breitner, S., Rückerl, R., Kraus, U., Cyrys, J., Geruschkat, U., Peters, A., Schneider, A. (2014). Short-term effects of air temperature on blood pressure and pulse pressure in potentially susceptible individuals. International Journal of Hygiene and Environmental Health, 217(7), 775–784.
Phung, D., Thai, P. K., Guo, Y., Morawska, L., Rutherford, S., Chu, C. (2016). Ambient temperature and risk of cardiovascular hospitalisation: An updated systematic review and meta-analysis. The Science of the Total Environment, 550, 1084–1102.
Takahashi, M. (2011). Heat stress on reproductive function and fertility in mammals. Reproductive Medicine and Biology, 11(1), 37–47.
Roth, Z., Aroyo, A., Yavin, S., Arav, A. (2008). The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology, 70(6), 887–897.
Ealy, A. D., Drost, M., Hansen, P. J. (1993). Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. Journal of Dairy Science, 76(10), 2899–2905.
Ozawa, M., Hirabayashi, M., Kanai, Y. (2002). Developmental competence and oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction (Cambridge, England), 124(5), 683–689.
Wolfenson, D., Sonego, H., Bloch, A., Shaham-Albalancy, A., Kaim, M., Folman, Y., Meidan, R. (2002). Seasonal differences in progesterone production by luteinised bovine thecal and granulosa cells. Domestic Animal Endocrinology, 22(2), 81–90.
Nakamura, H., Matsuzaki, I., Hatta, K., Ogino, K. (2004). Physiological involvement of placental endothelin-1 and prostaglandin F2alpha in uteroplacental circulatory disturbance in pregnant rats exposed to heat stress. Canadian Journal of Physiology and Pharmacology, 82(4), 225–230.
Schrick, F. N., Inskeep, E. K., Butcher, R. L. (1993). Pregnancy rates for embryos transferred from early postpartum beef cows into recipients with normal estrous cycles. Biology of Reproduction, 49(3), 617–621.
Auger, N., Fraser, W. D., Smargiassi, A., Bilodeau-Bertrand, M., Kosatsky, T. (2017). Elevated outdoor temperatures and risk of stillbirth. International Journal of Epidemiology, 46(1), 200–208.
Arroyo, V., Díaz, J., Carmona, R., Ortiz, C., Linares, C. (2016). Impact of air pollution and temperature on adverse birth outcomes: Madrid, 2001-2009. Environmental Pollution (Barking, Essex: 1987), 218, 1154–1161.
Bruckner, T. A., Modin, B., Vågerö, D. (2014). Cold ambient temperature in utero and birth outcomes in Uppsala, Sweden, 1915-1929. Annals of Epidemiology, 24(2), 116–121.
Dadvand, P., Basagaña, X., Sartini, C., Figueras, F., Vrijheid, M., de Nazelle, A., Sunyer, J., Nieuwenhuijsen, M. J. (2011). Climate extremes and the length of gestation. Environmental Health Perspectives, 119(10), 1449–1453.
Ha, S., Liu, D., Zhu, Y., Kim, S. S., Sherman, S., Mendola, P. (2017a). Ambient Temperature and Early Delivery of Singleton Pregnancies. Environmental Health Perspectives, 125(3), 453–459.
Ha, S., Liu, D., Zhu, Y., Soo Kim, S., Sherman, S., Grantz, K. L., Mendola, P. (2017b). Ambient Temperature and Stillbirth: A Multi-Center Retrospective Cohort Study. Environmental Health Perspectives, 125(6), 067011.
Schifano, P., Asta, F., Dadvand, P., Davoli, M., Basagana, X., Michelozzi, P. (2016). Heat and air pollution exposure as triggers of delivery: A survival analysis of population-based pregnancy cohorts in Rome and Barcelona. Environment International, 88, 153–159.
Lin, Y., Hu, W., Xu, J., Luo, Z., Ye, X., Yan, C., Liu, Z., Tong, S. (2017). Association between temperature and maternal stress during pregnancy. Environmental Research, 158, 421–430.
Mulder, E. J., Robles de Medina, P. G., Huizink, A. C., Van den Bergh, B. R., Buitelaar, J. K., Visser, G. H. (2002). Prenatal maternal stress: effects on pregnancy and the (unborn) child. Early Human Development, 70(1-2), 3–14.
Dole, N., Savitz, D. A., Hertz-Picciotto, I., Siega-Riz, A. M., McMahon, M. J., Buekens, P. (2003). Maternal stress and preterm birth. American Journal of Epidemiology, 157(1), 14–24.
Nkansah-Amankra, S., Luchok, K. J., Hussey, J. R., Watkins, K., Liu, X. (2010). Effects of maternal stress on low birth weight and preterm birth outcomes across neighbourhoods of South Carolina, 2000-2003. Maternal and Child Health Journal, 14(2), 215–226.
Puppel, K., Kapusta, A., Kuczyńska, B. (2015). The aetiology of oxidative stress in the various species of animals, a review. Journal of the Science of Food and Agriculture, 95(11), 2179–2184.
Tanaka, Masahito Kamiya, Yuko Kamiya, Mitsuru Nakai, Yutaka. (2007). Effect of high environmental temperatures on ascorbic acid, sulfhydryl residue and oxidised lipid concentrations in plasma of dairy cows. Animal Science Journal. 78. 301 - 306.
Boni R. (2019). Heat stress, a serious threat to reproductive function in animals and humans. Molecular Reproduction and Development, 86(10), 1307–1323.
Christen, F., Desrosiers, V., Dupont‐Cyr, B. A., Vandenberg, G. W., Le François, N. R., Tardif, J. ‐C., Blier, P. U. (2018). Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radical Biology Medicine, 116, 11–18.
Burton, G. J., Jauniaux, E. (2011). Oxidative stress. Best practice research. Clinical Obstetrics Gynaecology, 25(3), 287–299.
Díaz, J., Arroyo, V., Ortiz, C., Carmona, R., Linares, C. (2016). Effect of environmental factors on low weight in non-premature births: a time series analysis. PloS One, 11(10), e0164741.
Barajas, J., Cortes-Rodriguez, M., Rodríguez-Sandoval, E. (2012). Effect of temperature on the drying process of bee pollen from two zones of Colombia. Journal of Food Process Engineering, 35(1), 134–148.
Vásquez, A., Olofsson, T. C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48(3), 189–195.
Habryka, C., Kruczek, M., Drygas, B. (2016). Bee products used in apitherapy. World Scientific News, 48, 254–258.
Bakour, M., Al-Waili, N. S., El Menyiy, N., Imtara, H., Figuira, A. C., Al-Waili, T., Lyoussi, B. (2017). Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity. Journal of Food Science and Technology, 54(13), 4205–4212.
Aljadi, Almahdi Mohd Yusoff, Kamaruddin. (2004). Evaluation of the phenolic and antioxidant capacities of two Malaysian floral honeys. Food Chemistry. 85, 513-518.1
Baltrušaitytė V, Venskutonis P R, Čeksterytė V, (2007a). Antibacterial activity of honey and beebread of different origin against S. aureus and S. epidermidis. Food Technology and Biotechnology 45(2): 201-208.
Baltrušaitytė V, Venskutonis P.R., Čeksterytė V, (2007b). Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry 101(2): 502-514.
Čeksterytė V, (2002). Investigation of pollen composition and catalase activity in unifloral summer and polyfloral spring honey. Žemdirbystė. Mokslodarbai, 80(4): 193- 200.
Kieliszek, M., Piwowarek, K., Kot, A. M., Błażejak, S., Chlebowska-Śmigiel, A., Wolska, I. (2018) Pollen and bee bread as new health-oriented products: A review. Trends in Food Science and Technology. Elsevier Ltd.
Awad, A. L., Beshara, M. M., Ibrahim, A. F., Fahim, H. N. (2013). Effect of using bee bread as a natural supplement on productive and physiological performance of local sinai hens. Egyptian Poultry Science Journal . 5623(33).
Zakaria, F.H, Haron, M. N. (2020). Supplementation of bee bread decreases the abnormal sperm without affecting the sperm count of Sprague-Dawley rats. Bioscience Research, 17, 199–204.
Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L., Olczyk, K., (2015). Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine, 15.
OECD. (2008). Part 5 : Preparation , Reading and Reporting of Vaginal Smears. OECD Guidelines for the Testing of Chemicals, 116–125.
Haron M.N,. Wan F,. Siti A.S,. Mahaneem M. (2014). Tualang honey ameliorates restraint stress-induced impaired pregnancy outcomes in rats. European Journal of Integrative Medicine, 6(6), 657-663.
Othman, Z.A., Wan Ghazali, W.S, Nordin, L, Omar, N, Mohamed, M. (2019).Nutritional, Phytochemical and Antioxidant Analysis of Bee Bread from Different Regions of Malaysia. Indian Journal Pharmacology Science, 81, 955–960.
Mohd Nor, N. A. N., Haron, M. N. (2018). Effect of Heat Stress on Pregnancy Outcomes in Sprague Dawley Rats. International Journal of Engineering Technology, 7(4.43), 6-9.
Fotsing, D., Ngoupaye, G. T., Ouafo, A. C., Njapdounke, S. K. J., Kenneth, Y. A., Ngo Bum, E. (2017). Effects of Gladiolus dalenii on the stress-induced behavioral, neurochemical, and reproductive changes in rat. Frontiers in Pharmacology. 8. 685.
Saraswathi, C. D., Sreemantula, S., and Prakash, W. S. (2010). Effect of chronic cold restraint and immobilisation stress on estrous cycle in rats. Pharmacology. Online 2, 151–160.
Namwanje, M., Brown, C. W. (2016). Activins and inhibins: roles in development, physiology, and disease. Cold Spring Harbor Perspectives in Biology, 8(7), a021881.
Shivalingappa, H., Satyanaranyan, N. D., Purohit, M. G., Sahranabasappa, A., and Patil, S. B. (2002). Effect of ethanol extract of Rivea hypocrateriformis on the estrous cycle of the rat. Journal of Ethnopharmacology. 82, 11–17.
Ozawa, M., Tabayashi, D., Latief, T. A., Shimizu, T., Oshima, I., Kanai, Y. (2005). Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction, 129(5), 621–630
Paula‐Lopes, F. F., Lima, R. S., Satrapa, R. A., Barros, C. M. (2013). Physiology and endocrinology symposium: Influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. Journal of Animal Science, 91(3), 1143–1153.
Torres‐Júnior, J. R. S., Pires, M. F. A., De sá, W. F., Ferreira, A. M., Viana, J. H. M., Camargo, L. S. A., Baruselli, P. S. (2008). Effect of maternal heat‐stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology, 69(2), 155–166.
Götz, A. A., Wolf, M., Stefanski, V. (2008). Psychosocial maternal stress during pregnancy: effects on reproduction for F0 and F1 generation laboratory rats. Physiology Behavior, 93(4-5), 1055–1060.
Brummelte, S., Galea, L. A. (2010). Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive-like behavior in the dam. Hormones and Behavior, 58(5), 769–779.
Mateo, R. D., Wu, G., Bazer, F. W., Park, J. C., Shinzato, I., Kim, S. W. (2007). Dietary L-arginine supplementation enhances the reproductive performance of gilts. The Journal of Nutrition, 137(3), 652–656.
Zeng, X., Wang, F., Fan, X., Yang, W., Zhou, B., Li, P., Yin, Y., Wu, G., Wang, J. (2008). Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. The Journal of Nutrition, 138(8), 1421–1425.
Battaglia, C., Salvatori, M., Maxia, N., Petraglia, F., Facchinetti, F., Volpe, A. (1999). Adjuvant L-arginine treatment for in-vitro fertilization in poor responder patients. Human Reproduction (Oxford, England), 14(7), 1690–1697.
Wu G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition (Bethesda, Md.), 1(1), 31–37.
Sugiyama S, McGowan M, Phillips N, Kafi M, Young M. (2007). Effects of increased ambient temperature during IVM and/or IVF on the in vitro development of bovine zygotes. Reproductive Domestic Animal. 2007;42:271–4.
Parker, V. J., Douglas, A. J. (2010). Stress in early pregnancy: maternal neuro-endocrine-immune responses and effects. Journal of Reproductive Immunology, 85(1), 86–92.
Aréchiga, C. F., Ealy, A. D., Hansen, P. J. (1995). Evidence that glutathione is involved in thermotolerance of preimplantation murine embryos. Biology of Reproduction, 52(6), 1296–1301.
Sies H. (1991). Oxidative stress: from basic research to clinical application. The American Journal of Medicine, 91(3C), 31S–38S.
Balasubramanian, A., Birundha, S. (2019). Estimation of Glutathione Level in Second Trimester of Pregnancy without Complications.
Sakatani, M., Suda, I., Oki, T., Kobayashi, S., Kobayashi, S., Takahashi, M. (2007). Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. The Journal of Reproduction and Development, 53(3), 605–614.
Hashem, M.N., Simal-Garandara, J., Hassanein, E, M. (2021). Improving productive performance and health of mammals using honeybee products. Antioxidant, 10, 3, 1-25.
Zhang, S., Mesalam, A., Lee, K. L., Song, S. H., Khan, I., Yuan, Y., Wenfa, L. V., Kong, I. K. (2019). Effect of predator stress on the reproductive performance of female mice after nonsurgical embryo transfer. Journal of the American Association for Laboratory Animal Science: JAALAS, 58(3), 304–310.
Zhang, S. Y., Wang, J. Z., Li, J. J., Wei, D. L., Sui, H. S., Zhang, Z. H., Zhou, P., Tan, J. H. (2011). Maternal restraint stress diminishes the developmental potential of oocytes. Biology of Reproduction, 84(4), 672–681.
Sheriff MJ., Krebs CJ., Boonstra R.. (2009). The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology 78:1249–1258.
Cheong, J. N., Cuffe, J. S., Jefferies, A. J., Anevska, K., Moritz, K. M., Wlodek, M. E. (2016). Sex-Specific Metabolic Outcomes in Offspring of Female Rats Born Small or Exposed to Stress During Pregnancy. Endocrinology, 157(11), 4104–4120.
Seckl, J. R. (2001). Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Molecular and Cellular Endocrinology, 185(1-2), 61-71.
Hussain, T., Tan, B., Murtaza, G., Metwally, E., Yang, H., Kalhoro, M. S., Kalhoro, D. H., Chughtai, M. I., Yin, Y. (2020). Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Frontiers in pharmacology, 11, 586979.
Gonzalez-Añover, P., and A. Gonzalez-Bulnes. (2017). Maternal age modulates the effects of early-pregnancy L-proline supplementation on the birth-weight of piglets. Animal Reproduction Science 181: 63-68.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Nur Akmar Nadhirah Mohd Nor, Connie Fay Komilus, Mohd Nizam Haron, Fathurrahman Lananan, Ha Hou Chew, Nadzifah Yaakub, Nadzifah Yaakub, Asmad Kari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.