Extraction and Solubility Modeling of Anthocyanins Rich Extract from Hibiscus sabdariffa L. using Supercritical Carbon Dioxide


  • Zuhaili Idham Universiti Teknologi Malaysia https://orcid.org/0000-0003-2049-6245
  • Nicky Rahmana Putra Universiti Teknologi Malaysia
  • Hasmida Nasir Universiti Teknologi Malaysia
  • Lee Nian Yian Universiti Teknologi Malaysia
  • Nor Faadila Mohd Idrus Universiti Teknologi Malaysia
  • Mohd Azizi Che Yunus Universiti Teknologi Malaysia




Hibiscus sabdariffa, Anthocyanins, Supercritical carbon dioxide, solubility, modeling,


This study aimed to evaluate the extraction yield, and anthocyanins content of Hibiscus sabdariffa L. calyces extract using different temperatures (T) at 50 - 70°C, pressure (P) at 8 - 12 MPa, and modifier ratio at 5 - 10%. This work used a supercritical carbon dioxide (SC-CO2) extraction with ethanol and water as a modifier. The solubility of the extract was then measured before correlating using Chrastil, del Valle & Aguilera (dVA), and Adachi-Lu (A-L) models. This study revealed that a low T and increase in P at a constant modifier ratio would boost the anthocyanins content, contradicted with the extraction of total yield value, which is higher when increase T and low P. Meanwhile, analyzed results show that the solubility of Hibiscus sabdariffa calyces' extracts has successfully fitted the Chrastil's model with AARD of 27.72% as compared with dVA (35.42%) and A-L models (50.23%).


Osman, M. et al. Morpho-agronomic analysis of three roselle (Hibiscus sabdariffa L.) mutants in tropical Malaysia. Aust. J. Crop Sci. 5, 1150–1156 (2011).

Aregbesola, O. A., Faborode, M. O. & Hounkanrim, B. A. Studies on black tea production from fresh Roselle Calyxes. Int. Food Res. J. 25, 310–313 (2018).

Obouayeba, A. P. et al. Phytochemical and antioxidant activity of roselle (Hibiscus Sabdariffa L.) petal extracts. Res. J. Pharm. Biol. Chem. Sci. 5, 1453–1465 (2014).

Frimpong, G., Adotey, J., Ofori-kwakye, K., Kipo, S. L. & Dwomo-fokuo, Y. Potential of aqueous extract of Hibiscus sabdariffa calyces as colouring agent in three paediatric oral pharmaceutical formulations. J. Appl. Pharm. Sci. 4, 1–7 (2014).

Ngamwonglumlert, L., Devahastin, S. & Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr. 57, 3243–3259 (2017).

Pragalyaashree, M. M., Tiroutchelvame, D. & Sashikumar, S. Degradation kinetics of anthocyanin extracted from roselle calyces (Hibiscus sabdariffa). J. Appl. Pharm. Sci. 8, 57–063 (2018).

Miranda-Medina, A. et al. Optimization of Hibiscus sabdariffa L. (Roselle) anthocyanin aqueous-ethanol extraction parameters using response surface methodology. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 19, 53–62 (2018).

Cissé, M. et al. Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. J. Food Eng. 109, 16–21 (2012).

Garcia-Mendoza, M. del P. et al. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids 119, 9–16 (2017).

Jiao, G. & Kermanshahi pour, A. Extraction of anthocyanins from haskap berry pulp using supercritical carbon dioxide: Influence of cosolvent composition and pretreatment. LWT - Food Sci. Technol. 98, 237–244 (2018).

Woźniak, Ł., Marszałek, K., Skąpska, S. & Jędrzejczak, R. The application of supercritical carbon dioxide and ethanol for the extraction of phenolic compounds from Chokeberry pomace. Appl. Sci. 7, 1–12 (2017).

Ahmadian-Kouchaksaraie, Z. & Niazmand, R. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. J. Supercrit. Fluids 121, 19–31 (2017).

Monroy, Y. M., Rodrigues, R. A. F., Sartoratto, A. & Cabral, F. A. Influence of ethanol, water, and their mixtures as cosolvents of the supercritical carbon dioxide in the extraction of phenolics from purple corn cob (Zea mays L.). J. Supercrit. Fluids 118, 11–18 (2016).

Mohamed-Mahmood, M., Daud, W. R. W., Markom, M. & Mansor, C. N. A. N. C. Cosolvent selection for supercritical fluid extraction (SFE) of bioactive compounds from Orthosiphon stamineus. Sains Malaysiana 47, 1741–1747 (2018).

Chuo, S. C. et al. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 0, 1–30 (2020).

Pimentel-Moral, S. et al. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 147, 213–221 (2019).

Idham, Z. et al. Optimisation of supercritical CO2 extraction of red colour from roselle (Hibiscus Sabdariffa Linn.) calyces. Chem. Eng. Trans. 56, 871–876 (2017).

Soetaredjo, F. E., Ismadji, S., Yuliana Liauw, M., Angkawijaya, A. E. & Ju, Y.-H. Catechin sublimation pressure and solubility in supercritical carbon dioxide. Fluid Phase Equilib. 358, 220–225 (2013).

Chrastil, J. Solubility of solids in supercritical gases. J. Chem. Phys. 77, 1512–1516 (1982).

Adachi, Y. & Lu, B. C.-Y. Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilib. 14, 147–156 (1983).

Del Valle, J. M. & Aguilera, J. M. An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide. Ind. Eng. Chem. Res. 27, 1551–1553 (1988).

Lukmanto, S. et al. Supercritical CO2 extraction of phenolic compounds in Roselle(Hibiscus Sabdariffa L.). Chem. Eng. Commun. 200, 1187–1196 (2013).

Idham, Z. et al. Effect of flow rate, particle size and modifier ratio on the supercritical fluid extraction of anthocyanins from Hibiscus sabdariffa (L). IOP Conf. Ser. Mater. Sci. Eng. 932, (2020).

Sapkele, G. N., Patil, S. M., Surwase, U. S. & Bhatbhage, P. K. Supercritical Fluid Extraction. Int. J. Chem. Sci. 8, 729–743 (2010).

Putra, N. R., Rizkiyah, D. N., Machmudah, S., Shalleh, L. M. & Che Yunus, M. A. Recovery and solubility of flavonoid and phenolic contents from Arachis Hypogea in supercritical carbon dioxide assisted by ethanol as cosolvent. J. Food Process. Preserv. 1–9 (2020). doi:10.1111/jfpp.14768

Abdul Aziz, A. H. et al. Solubility of sinensetin and isosinensetin from Cat's Whiskers (Orthosiphon stamineus) leaves in ethanol-assisted supercritical carbon dioxide extraction: experimental and modeling. Chem. Pap. 75, 6557–6563 (2021).

Rahmawati, A. et al. Supercritical CO2 Extraction of Phytochemical Compounds from Mimosa pudica Linn. Chem. Eng. Commun. 202, 1011–1017 (2015).

Tiono, R. D. et al. Investigation on supercritical CO2 extraction of black nightshade berries (Solanum nigrum linn.). Biointerface Res. Appl. Chem. 11, 13502–13515 (2021).

Mohd-Nasir, H. et al. Optimization of the supercritical carbon dioxide extraction of Quercus infectoria galls extracts and its bioactivities. J. Food Process. Preserv. 45, 0–3 (2021).

Aziz, A. H. A. et al. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content. IOP Conf. Ser. Mater. Sci. Eng. 162, (2016).

Maran, J. P. et al. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. Technol. 51, 1938–1946 (2014).

Dai, W. et al. Influence of Modifier in Supercritical CO2 on Qualitative and Quantitative Extraction Results of Eucalyptus Ecential Oil. Am. J. Plant Sci. 09, 163–171 (2018).

Ruan, X. et al. Optimization of Process Parameters of Extraction of Amentoflavone, Quercetin and Ginkgetin from Taxus chinensis Using Supercritical CO 2 Plus Co-Solvent. Molecules 19, 17682–17696 (2014).

Mandana, B., Russly, A. R., Ali, G. & Farah, S. T. Antioxidant activity of spearmint (Mentha spicata L.) leaves extracts by supercritical carbon dioxide (SC-CO2) extraction. Int. Food Res. J. 18, 543–547 (2011).

Patil, A. A., Sachin, B. S., Wakte, P. S. & Shinde, D. B. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design. J. Adv. Res. 5, 629–35 (2014).

Díaz-Reinoso, B., Moure, A., Domínguez, H. & Parajó, J. C. Supercritical CO 2 Extraction and Purification of Compounds with Antioxidant Activity. J. Agric. Food Chem. 54, 2441–2469 (2006).

Mantell, C., de la Ossa, E. & Rodríguez, M. Supercritical Fluid Extraction of Anthocyanins from Grape Pomace. vol.2, pp. 615–1618 (2001).

Manna, L., Bugnone, C. A. & Banchero, M. Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. J. Supercrit. Fluids 104, 204–211 (2015).

Mohd Nasir, H., Md Salleh, L., Ismail, A. R. & Machmudah, S. Solubility correlation of gall (Quercus infectoria) extract in supercritical CO 2 using semi-empirical equations. Asia-Pacific J. Chem. Eng. 12, 790–797 (2017).

Belayneh, H. D., Wehling, R. L., Reddy, A. K., Cahoon, E. B. & Ciftci, O. N. Ethanol-Modified Supercritical Carbon Dioxide Extraction of the Bioactive Lipid Components of Camelina sativa Seed. J. Am. Oil Chem. Soc. 94, 855–865 (2017).

Danlami, J. M., Zaini, M. A. A., Arsad, A. & Yunus, M. A. C. Solubility assessment of castor (Ricinus communis L) oil in supercritical CO2 at different temperatures and pressures under dynamic conditions. Ind. Crops Prod. 76, 34–40 (2015).

Putra, N. R., Che Yunus, M. A. & Machmudah, S. Solubility model of arachis hypogea skin oil by modified supercritical carbon dioxide. Sep. Sci. Technol. 54, 731–740 (2019).

Marceneiro, S., Coimbra, P., Braga, M. E. M., Dias, A. M. A. & De Sousa, H. C. Measurement and correlation of the solubility of juglone in supercritical carbon dioxide. Fluid Phase Equilib. 311, 1–8 (2011).

Khimeche, K., Alessi, P., Kikic, I. & Dahmani, A. Solubility of diamines in supercritical carbon dioxide: Experimental determination and correlation. J. Supercrit. Fluids 41, 10–19 (2007).

Liu, T., Li, S., Zhou, R., Jia, D. & Tian, S. Solubility of Triphenylmethyl Chloride and Triphenyltin Chloride in Supercritical Carbon Dioxide. J. Chem. Eng. Data 54, 1913–1915 (2009).

Han, S., Wang, W., Jiao, Z. & Wei, X. Solubility of Vitamin E Acetate in Supercritical Carbon Dioxide: Measurement and Correlation. J. Chem. Eng. Data 62, 3854–3860 (2017).

Paula, J. T., Sousa, I. M. O., Foglio, M. A. & Cabral, F. A. Solubility of protocatechuic acid, sinapic acid and chrysin in supercritical carbon dioxide. J. Supercrit. Fluids 112, 89–94 (2016).