Mechanical Behaviour of Cancellous bone: Compression and Three-Point Bending Test


  • Farah Amira Mohd Ghazali School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
  • Ardiyansyah Syahrom Medical Device Technology Center (MEDiTEC), Institute Human Centred Engineering (iHumEn), Universiti Teknologi Malaysia, Johor, Malaysia



Cancellous bone, biomechanics, compression, three-point bending


The mechanical properties of cancellous bone are fundamental in providing structural support and flexibility during physical activities. Characterization of cancellous bone properties and its mechanical behaviour were found crucial as information of the elastic and failure properties of the tissue may potentially be used to study the effects of drug treatments, aging and disease at the tissue level. This study aims to present the difference of mechanical properties of cancellous bone between compressive and three-point bending loads. Cancellous bone specimens from the femoral and tibial condyles of bovines were mechanically tested using three-point bending test and compression test and correlated with morphological parameters such as bone volume fraction and porosity. From the results, significant difference of mechanical properties was found between cancellous bone specimens tested with compressive and three-point bending load. From compressive load, the maximum stress reached 4.2 MPa, whereas in three-point bending, maximum flexural stress reached 17.0 MPa. Cancellous bone strength was found to be much higher when tested with three-point bending load, although correlations with morphological parameters such as bone volume fraction (BV/TV) and porosity were found lower compared to that in compressive load. In conclusion, there are no correlation between compression and three-point bending with morphology indices (BV/TV and porosity).


Ammann, P., & Rizzoli, R. (2003, March 19). Bone strength and its determinants. Osteoporosis International : A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, pp. 13–18.

Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27–35.

Bouxsein, M. L., & Karasik, D. (2006, June). Bone geometry and skeletal fragility. Current Osteoporosis Reports, Vol. 4, pp. 49–56.

Bureau, M. N., Denault, J., Perrin, F., & Dickson, J. I. (2001). Crack Propagation in Continuous Glass Fiber/Polypropylene Composites: Matrix Microstructure Effect. In Plastics Failure Analysis and Prevention.

Burgers, T. A., Mason, J., Niebur, G., & Ploeg, H. L. (2008a). Compressive properties of trabecular bone in the distal femur. Journal of Biomechanics, 41(5), 1077–1085.

Burgers, T. A., Mason, J., Niebur, G., & Ploeg, H. L. (2008b). Compressive properties of trabecular bone in the distal femur. Journal of Biomechanics, 41(5), 1077–1085.

Cheal, E. J., Snyder, B. D., Nunamaker, D. M., & Hayes, W. C. (1987). Trabecular bone remodeling around smooth and porous implants in an equine patellar model. Journal of Biomechanics, 20(11–12), 1121–1134.

Ciarelli, M. J., Goldstein, S. A., Kuhn, J. L., Cody, D. D., & Brown, M. B. (1991). Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. Journal of Orthopaedic Research, 9(5), 674–682.

Cristofolini, L., & Viceconti, M. (2000). Mechanical validation of whole bone composite tibia models. Journal of Biomechanics, 33(3), 279–288.

Cucchiarini, M., de Girolamo, L., Filardo, G., Oliveira, J. M., Orth, P., Pape, D., & Reboul, P. (2016). Basic science of osteoarthritis. Journal of Experimental Orthopaedics, 3(1).

Currey, J. D. (1969). The mechanical consequences of variation in the mineral content of bone. Journal of Biomechanics, 2(1), 1–11.

Ding, M., Odgaard, A., Linde, F., & Hvid, I. (2002). Age-related variations in the microstructure of human tibial cancellous bone. Journal of Orthopaedic Research, 20(3), 615–621.

Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., … Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47(6), 1076–1079.

El Masri, F., de Sapin Brosses, E., Rhissassi, K., Skalli, W., & Mitton, D. (2012). Apparent Young’s modulus of vertebral cortico-cancellous bone specimens. Computer Methods in Biomechanics and Biomedical Engineering, 15(1), 23–28.

Friedman, A. W. (2006). Important Determinants of Bone Strength. JCR: Journal of Clinical Rheumatology, 12(2), 70–77.

Fyhrie, D. P., & Carter, D. R. (1990). Femoral head apparent density distribution predicted from bone stresses. Journal of Biomechanics, 23(1), 1–10.

Grimm, M. J., & Williams, J. L. (1997). Measurements of permeability in human calcaneal trabecular bone. Journal of Biomechanics, 30(7), 743–745.

He, Z., Chu, L., Liu, X., Han, X., Zhang, K., Yan, M., … Yu, Z. (2020). Differences in subchondral trabecular bone microstructure and finite element analysis-based biomechanical properties between osteoporosis and osteoarthritis. Journal of Orthopaedic Translation, 24(June), 39–45.

Heaney, R. P. (1993). Is there a role for bone quality in fragility fractures? Calcified Tissue International, 53(1 Supplement).

Hudelmaier, M., Kollstedt, A., Lochmüller, E. M., Kuhn, V., Eckstein, F., & Link, T. M. (2005). Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporosis International, 16(9), 1124–1133.

Jämsä, T., Jalovaara, P., Peng, Z., Väänänen, H. ., & Tuukkanen, J. (1998). Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone, 23(2), 155–161.

Kang, Q., An, Y. H., & Friedman, R. F. (1998). Mechanical properties and bone densities of canine trabecular bone. Journal of Materials Science: Materials in Medicine, 9(5), 263–267.

Keaveny, T. M., Wachtel, E. F., Ford, C. M., & Hayes, W. C. (1994). Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. Journal of Biomechanics, 27(9), 1137–1146.

Kohles, S. S., Roberts, J. B., Upton, M. L., Wilson, C. G., Bonassar, L. J., & Schlichting, A. L. (2001). Direct perfusion measurements of cancellous bone anisotropic permeability. Journal of Biomechanics, 34(9), 1197–1202. Retrieved from

Leppänen, O., Sievänen, H., Jokihaara, J., Pajamäki, I., & Järvinen, T. L. N. (2006). Three-point bending of rat femur in the mediolateral direction: Introduction and validation of a novel biomechanical testing protocol. Journal of Bone and Mineral Research, 21(8), 1231–1237.

Linde, F., Gothgen, C. B., Hvid, I., & Pongsoipetch, B. (1988). Mechanical properties of trabecular bone by a non-destructive compression testing approach. Engineering in Medicine, 17(1), 23–29.

Lotz, J. C., Cheal, E. J., & Hayes, W. C. (1991). Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I—Linear Analysis. Journal of Biomechanical Engineering, 113(4), 353–360.

Morgan, E. F., Unnikrisnan, G. U., & Hussein, A. I. (2018). Bone Mechanical Properties in Healthy and Diseased States. Annual Review of Biomedical Engineering, 20, 119–143.

Nauman, E. A., Fong, K. E., & Keaveny, T. M. (1999). Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site. Annals of Biomedical Engineering, 27(4), 517–524.

Nazarian, A., Von Stechow, D., Zurakowski, D., Müller, R., & Snyder, B. D. (2008). Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcified Tissue International, 83(6), 368–379.

Nicholson, P. H. F., Müller, R., Lowet, G., Cheng, X. G., Hildebrand, T., Rüegsegger, P., … Boonen, S. (1998). Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone, 23(5), 425–431.

Nobakhti, S., Katsamenis, O. L., Zaarour, N., Limbert, G., & Thurner, P. J. (2017). Elastic modulus varies along the bovine femur. Journal of the Mechanical Behavior of Biomedical Materials, 71(August 2016), 279–285.

Ochia, R. S., & Ching, R. P. (2002). Hydraulic resistance and permeability in human lumbar vertebral bodies. Journal of Biomechanical Engineering, 124(5), 533–537.

Ochoa, J. A., Sanders, A. P., Kiesler, T. W., Heck, D. A., Toombs, J. P., Brandt, K. D., & Hillberry, B. M. (1997). In vivo observations of hydraulic stiffening in the canine femoral head. Journal of Biomechanical Engineering, 119(1), 103–108.

Oftadeh, R., Perez-Viloria, M., Villa-Camacho, J. C., Vaziri, A., & Nazarian, A. (2015). Biomechanics and mechanobiology of trabecular bone: a review. Journal of Biomechanical Engineering, 137(1), 0108021.

Osterhoff, G., Morgan, E. F., Shefelbine, S. J., Karim, L., McNamara, L. M., & Augat, P. (2016). Bone mechanical properties and changes with osteoporosis. Injury, 47, S11–S20.

Portero-Muzy, N. R., Chavassieux, P. M., Mitton, D., Duboeuf, F., Delmas, P. D., & Meunier, P. J. (2007). Eulerstrut.cavity, a new histomorphometric parameter of connectivity reflects bone strength and speed of sound in trabecular bone from human os calcis. Calcified Tissue International, 81(2), 92–98.

Rapillard, L., Charlebois, M., & Zysset, P. K. (2006a). Compressive fatigue behavior of human vertebral trabecular bone. Journal of Biomechanics, 39(11), 2133–2139.

Rapillard, L., Charlebois, M., & Zysset, P. K. (2006b). Compressive fatigue behavior of human vertebral trabecular bone. Journal of Biomechanics, 39(11), 2133–2139.

Rho, J. Y., Hobatho, M. C., & Ashman, R. B. (1995). Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering and Physics, 17(5), 347–355.

Rincón-Kohli, L., & Zysset, P. K. (2009). Multi-axial mechanical properties of human trabecular bone. Biomechanics and Modeling in Mechanobiology, 8(3), 195–208.

Roberts, J. C., Merkle, A. C., Carneal, C. M., Voo, L. M., Johannes, M. S., Paulson, J. M., … Uy, O. M. (2013). Development of a Human Cranial Bone Surrogate for Impact Studies. Frontiers in Bioengineering and Biotechnology, 1(October), 1–8.

Røhl, L., Larsen, E., Linde, F., Odgaard, A., & Jørgensen, J. (1991). Tensile and compressive properties of cancellous bone. Journal of Biomechanics, 24(12), 1143–1149.

Russo, C. R. (2009, September). The effects of exercise on bone. Basic concepts and implications for the prevention of fractures. Clinical Cases in Mineral and Bone Metabolism, Vol. 6, pp. 223–228. Retrieved from /pmc/articles/PMC2811354/

Sadeghi, H., Espino, D. M., & Shepherd, D. E. T. (2017). Fatigue strength of bovine articular cartilage-on-bone under three-point bending: the effect of loading frequency. BMC Musculoskeletal Disorders, 18(1), 142.

Schaffler, M. B., & Burr, D. B. (1988). Stiffness of compact bone: Effects of porosity and density. Journal of Biomechanics, 21(1), 13–16.

Shi, X., Sherry Liu, X., Wang, X., Edward Guo, X., & Niebur, G. L. (2010). Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. Journal of Biomechanics, 43(13), 2460–2466.

Shim, V. P. W., Yang, L. M., Liu, J. F., & Lee, V. S. (2005a). Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. International Journal of Impact Engineering, 32(1–4), 525–540.

Shim, V. P. W., Yang, L. M., Liu, J. F., & Lee, V. S. (2005b). Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. International Journal of Impact Engineering, 32(1–4), 525–540.

Shin, H. C., & Yoon, Y. S. (2006). Bone temperature estimation during orthopaedic round bur milling operations. Journal of Biomechanics, 39(1), 33–39.

Silva, M. J. (2017). Bone Mechanical Testing by Three-Point Bending. Advances in Clinical and Experimental Medicine, 26(3), 505–514. Retrieved from

Stauber, M., & Müller, R. (2006). Age-related changes in trabecular bone microstructures: Global and local morphometry. Osteoporosis International, 17(4), 616–626.

Syahrom, A., Abdul Kadir, M. R., Abdullah, J., & Öchsner, A. (2011). Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation. Medical and Biological Engineering and Computing, 49(12), 1393–1403.

Teo, J. C. M., Si-Hoe, K. M., Keh, J. E. L., & Teoh, S. H. (2007). Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties. Materials Science and Engineering: C, 27(2), 333–339.

van Lenthe, G. H., Stauber, M., & Müller, R. (2006). Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone, 39(6), 1182–1189.

Zhao, S., Arnold, M., Ma, S., Abel, R. L., Cobb, J. P., Hansen, U., & Boughton, O. (2018). Standardizing compression testing for measuring the stiffness of human bone. Bone & Joint Research, 7(8), 524–538.