Coefficient Estimate of Toeplitz Determinant for a Certain Class of Close-to-Convex Functions
DOI:
https://doi.org/10.11113/mjfas.v17n5.2128Keywords:
Geometric Function Theory, Differential EquationsAbstract
Let S denote the class of analytic and univalent functions in D, where D is defined as unit disk, D≔{z∈C∶|z|<1} and having the Taylor representation form of S. We will determine the estimation for the Toeplitz determinants where the elements are the Taylor coefficients of the class close-to-convex functions in S.
References
Ali, M. F., Thomas, D. K., & Vasudevarao, A. (2018). Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc., 97(2), 253-264.
A. Janteng, S. A. Halim and M. Darus, ‘Hankel determinant for starlike and convex functions’, Int. J. Math. Anal. 1 (2007), 619–625.
Aini Janteng, Suzeini Abdul Halim and Maslina Darus, 2008. Estimate on the second Hankel functional for functions whose derivative has a positive real part. Journal of Quality Measurement and Analysis, Vol. 4, pp. 189-195.
Aini Janteng, Suzeini Abdul Halim and Maslina Darus, 2007. Hankel determinant for starlike and convex functions, International Journal of Mathematical Analysis, Vol. 1, no. 13, pp. 619-625.
Ali, M. F., & Vasudevarao, A. (2017). A note on Toeplitz Determinants whose elements are the coefficients of Univalent Functions. arXiv preprint arXiv:1704.00657.
Bansal, D. (2013). Upper bound of second Hankel determinant for a new class of analytic functions. Applied Mathematics Letters, 26(1), 103-107.
D. K. Thomas and S. A. Halim, RETRACTED ARTICLE: ‘Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions’, Bull. Malays. Math. Sci. Soc. 40(4) (2017), 1781–1790.
F. R. Keogh and E. P. Merkes, ‘A coefficient inequality for certain classes of analytic functions’, Proc. Amer. Math. Soc. 20 (1969), 8–12.
Gangadharan, Murugusundaramoorthy and Nanjundan Magesh, 2009. Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. Bulletin of Mathematical Analysis and Applications, Vol. 1, issue 5, pp. 85-89.
Goodman, A. W. (1983). Univalent functions (Vol. 1): Mancorp Pub.
I. Efraimidis, ‘A generalization of Livingston’s coefficient inequalities for functions with positive real part’, J. Math. Anal. Appl. 435(1) (2016), 369–379.
Oqlah Al-Refai and Maslina Darus, 2009. Second Hankel determinant for a class of analytic functions defined by a Fractional Operator. European Journal of Scientific Research, Vol. 28, no. 2, pp. 234-241.
Kharudin, N., Akbarally, A., Mohamad, D., & Soh, S. C. (2011). The second Hankel determinant for the class of close to convex functions. European Journal of Scientific Research, 66(3), 421-427.
Kaplan, W. (1952). Close-to-convex schlicht functions. The Michigan Mathematical Journal, 1(2), 169-185.
P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259 (Springer, New York–Berlin–Heidelberg–Tokyo, 1983).
Răducanu, D., & Zaprawa, P. (2017). Second Hankel determinant for close-to-convex functions. Comptes Rendus Mathematique, 355(10), 1063-1071.
Shaharuddin Cik Soh and Daud Mohamad, 2008. Coefficient bounds for certain classes of close-to-convex functions. International Journal of Mathematical Analysis, Vol. 2, no. 27, pp. 1343-1351.
Selvaraj, C. and Vasanthi, N., 2010. Coefficient bounds for certain subclasses of close-to convex functions. International Journal of Mathematical Analysis, Vol. 4, no. 37, pp. 1807-1814.
Sivasubramanian, S., Govindaraj, M., & Murugusundaramoorthy, G. (2016). Toeplitz Matrices whose Elements are the Coefficients of Analytic Functions belonging to Certain Conic Domains. International Journal of Pure and Applied Mathematics, 109(10), 39-49.
V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy
and J. M. Jahangiri, ‘Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation’, J. Complex Anal. 2016 (2016), 4960704.
W. Ma, ‘Generalized Zalcman conjecture for starlike and typically real functions’, J. Math. Anal. Appl. 234(1) (1999), 328–339.
Ye, K., & Lim, L. H. (2016). Every matrix is a product of Toeplitz matrices. Foundations of Computational Mathematics, 16(3), 577-598.