Mechanism of protection of adenosine from tert-butoxyl radicals and repair of adenosine radicals by α-tocopherol in aqueous solution
DOI:
https://doi.org/10.11113/mjfas.v7n1.205Keywords:
α-tocopherol, addenosine repair, t-BBuO• radicals, oxiddation,Abstract
The rates of oxidation of adenosine and α-tocopherol by tert-butoxyl radicals (t-BuO•) were studied spectrophotometrically. Radicals (t-BuO•) were generated by the photolysis of tert-butyl hydroperoxide (t-BuOOH) in presence of tert-butyl alcohol to scavenge •OH radicals. The rates and the quantum yields () of oxidation of α-tocopherol by t-BuO• radicals were determined in the absence and presence of varying concentrations of adenosine. An increase in the concentration of adenosine was found to decrease the rate of oxidation of α-tocopherol, suggesting that adenosine and α-tocopherol competed for t-BuO• radicals. From competition kinetics, the rate constant of α-tocopherol reaction with t-BuO• was calculated to be 7.29 x 108 dm3 mol-1 s-1. The quantum yields expt and cal values suggested that α-tocopherol not only protected adenosine from t-BuO• radicals, but also repaired adenosine radicals, formed by the reaction of adenosine with t-BuO• radicals.References
R. Kohen, A. Nyska, Toxicol. Pathol. 30 (2002) 620-650.
C. Von Sonntag, The Chemical basis of Radiation Biology, Taylor & Francis, London 1987.
J. A. Simpson, S. Narita, S. Geiseg, S. Gebicki, J. M. Gebicki, R. T. Dean, Biochem. J. 282 (1992) 621-624.
S. Gebicki, J. M. Gebicki, Biochem. J. 289 (1993) 743-749.
K. M. Schaic, M. H. Yang, Free Radic. Biol. Med. 20 (1996) 225-242.
W. F. Ho, B. C. Gilbert, M. J. Davies, J. Chem. Soc. Perkin Trans. 2 (1997) 2525-2532.
J. A. Hartley, N. W. Gibson, A. Kilkenny, S. H. Yuspa, Carcinogenesis 8 (1987) 1821-1825.
J. A. Hartley, N. W. Gibson, L. A. Zwelling, S. H. Yuspa, Cancer Res. 45 (1985) 4864-4870.
J. E.Swanger, P. Dolar, J. L. Zweier, P. Kuppusamy, T. W. Kensler, Chem. Res. Toxicol. 4, (1991) 223-228.
F. Hutchinson, Prog. Nucleic Acid Res. Mol. Biol. 32 (1985) 115-154.
M. Erben-Russ, C. Michel, W. Bors, M. Saran, J. Phys. Chem. 91 (1987) 2362-2365.
A. R. Ness, J. W. Powles, Int. J. Epidemiol. 26 (1997) 1-13.
K. A. Steinmetz, J. D. Potter, J. Am. Diet. Assoc. 96 (1996) 1027-1039.
G. W. Burton, A. Joyce, K. U. Ingold, Arch. Biochem. Biophys. 221 (1983) 281-290.
F. A. Oski, New Engl. J. Med. 303 (1980) 454-455.
O. Aruoma, Prooxidant Properties: An Important Consideration for Food Additives and/or Nutrient Components? In Free Radicals and Food
Additives (I. O. Aruoma, B. Halliwell, eds.) Taylor and Francis, London pp. 173.
M. Gaziano, J. E. Manson, J. E. Buring, C. H. Hennekens, Ann. NY Acad. Sci. 669 (1992) 249-259.
M. Sudha Swaraga, M. Adinarayana, Indian J. Biochem. Biophys. 40 (2003) 27-32.
Charitha, M. Adinarayana, Int. J. Chem. Kinetics 37 (2005) 515-521.
D. Asmus, H. Mockel, A. Henglein, J. Phys. Chem. 77 (1973) 1218-1221.
J. A. Howard, K. U. Ingold, Can. J. Chem, 4, (1967) 793-802.
Ravi Kumar, M. Adinarayana, Proc. Indian Acad. Sci. 112 (2000) 551-557.
W. Bors, C. Michel, M. Saran, Biochem. Biophy. Acta, 796, (1984) 312-319.
S. Akhalaq, S. Al-Baghdad, C. Von Sonntag, Carbohydrate Res. 164 (1987) 71-83.
B. Kalyanaraman, Meth. Enzymol, 186 (1990) 333-342.
H. Yamasaki, S.C. Grace, FEBS Lett. 422 (1998) 377-380.
U. Takahama, T. Oniki, Physiol. Plant 101 (1997) 845-852.