Integral and differential equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits
DOI:
https://doi.org/10.11113/mjfas.v7n1.203Keywords:
Conformal mapping, Boundary integral equations, Multiply connected regions, Boundary relationship, Differential equations,Abstract
Conformal mapping is a useful tool in science and engineering. On the other hand exact mapping functions are unknown except for some special regions.
In this paper we present a new boundary integral equation with classical Neumann kernel associated to f f , where f is a conformal mapping of
bounded multiply connected regions onto a disk with circular slit domain. This boundary integral equation is constructed from a boundary relationship
satisfied by a function analytic on a multiply connected region. With f f known, one can then treat it as a differential equation for computing f .
References
Z. Nehari, Conformal Mapping, Dover Publications, Inc, New York, 1952.
D. Crowdy, and J. Marshall, Computational Methods and Function Theory 6 (2006) 59-76.
S.W. Ellacott, Numerische Mathematik 33 (1979) 437-446.
P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley, New York, 1974.
P.K. Kythe, Computational Conformal Mapping, Birkhauser Boston, New Orleans, 1998.
A. H. M. Murid and N. A. Mohamed, Int. J. of Pure and Appl. Math. 38(2007), 229-250.
A. H. M. Murid and M. R. M. Razali, Matematika 15 (1999), 79-93.
D. Okano, H. Ogata, K. Amano and M. Sugihara, Journal of Comp. Appl. Math. 159 (2003), 109-117.
G. T. Symm, Numer. Math. 13 (1969), 448-457.
M. M. S. Nasser, Journal of Comput. Methods. Funct. Theory 9 (2009), 127-143.
A. H. M. Murid and Laey-Nee Hu, Int. J. Contemp. Math. Sciences 4 (2009), 1121-1147.
M. M. S. Nasser, Boundary Integral Equation Approach for Riemann Problem, PhD Thesis, Department of Mathematics, Universiti Teknologi
Malaysia, 2005.
R. Wegmann and M. M. S. Nasser, J. Comput. Appl. Math. 214 (2008), 36-57.
E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis, Pearson Education, Inc. New Jersey, 2003.
K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations, Society for Industrial and Applied
Mathematics, Philadelphia, 1976.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd Edition, Academic Press, Orlando, 1984.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, University Press, Cambridge, 1927.
W. van Koppenfels and F. Stallmann, Praxis der Konformen Abbildung, Göttingen, Heidelberge, Berlin, 1959.